FOOD PROPERTIES: ACCESS AND CONTRIBUTE

(A crowdsourced database for predictive properties of food materials)

TABLE OF CONTENTS

Overview of Database	
Use in Manufacturing	3
Use in Research	3
Use in Instruction	
Section 1: Getting Oriented	4
Section 1.1: Bio-Materials	5
Section 1.2: Bio-Material Composition	
Section 1.3: Bio-Formula	
Section 1.4: Bio-Material Groups	
Section 1 5. Bio-Variables	
Section 1.6. Bio-Property	
Section 2: Data Retrieval	14
Section 2.1. Estimating properties of a food material vs. temperature, composition, etc.	15
Section 2.2. Estimating properties of a food material vs. temperature, composition, etc.	
Section 2.2: Estimating one property for multiple material	20
Section 2.4: Visualizing one properties of the same material	21 22
Section 2.5. visualizing different property vs. another for the same material	22
Section 2.5. Visualizing different properties and different materials	25
Section 2.6: Frequently Asked Questions for Data Retrieval	24
Section 3: Data input	25
Everyone can enter data	25
Overview of steps	25
	26
Section 3.1: Getting verified	28
Section 3.1: Getting verified Section 3.2: Adding Formulas	
Section 3.1: Getting verified Section 3.2: Adding Formulas Section 3.3: Adding Discrete Data	31
Section 3.1: Getting verified Section 3.2: Adding Formulas Section 3.3: Adding Discrete Data Section 3.3.1: Exracting Data from Figures	31
Section 3.1: Getting verified Section 3.2: Adding Formulas Section 3.3: Adding Discrete Data Section 3.3.1: Exracting Data from Figures Section 3.4: Formula Material Association	
Section 3.1: Getting verified Section 3.2: Adding Formulas Section 3.3: Adding Discrete Data Section 3.3.1: Exracting Data from Flgures Section 3.4: Formula Material Association Section 3.5: Add Custom Bio-Material	
Section 3.1: Getting verified	
Section 3.1: Getting verified	
Section 3.1: Getting verified	

Section 4: Validation	
Section 4.1: Formula Validation	
Section 5: Use Examples: Manufacturing, Research and EdUcation	
Research Use Example	53
Education Use Example	53
Section 5.1: Manufacturing Examples	53
Section 5.1.1: Preventing Microbial Growth of Raw Chicken	54
Section 5.1.2: Changes in Density and Viscosity of Alcohol and Mixers	54
Section 5.1.3: Microwave Heating of Chicken and Potatoes	55
Section 5.1.4: Managing Apparent Viscosity in Tomato Paste	56
Section 5.1.5: Freezing Process Optimization for Microwavable Meals	56
Section 5.1.6: Thermal Conductivity of Frozen Carrots, Turkey, and Yogurt	57
Section 5.2: Research Use Examples	
Section 5.2.1: Food Safety Example	
Section 5.2.2: Comparitive analysis	
Section 5.2.3: Customizing Cataloged Materials Example #1	60
Section 5.2.4: Customizing Cataloged Materials Example #2	63
Section 6: Property estimation details	67
Section 6.1: Overview of the prediction process	67
Section 6.2: Source of properties data and equations	68
Section 6.3: Discrete data and prediction equations	69
Section 6.4: Crowdsourcing	70
Glossary	71
Index	73
Formulas in Readable Format	73
Formula Variables	74

SECTION 0: INTRODUCTION

OVERVIEW OF DATABASE

What is in this database?

This database is a collection of biomaterial data and formulas from published, peer-reviewed literature. Both data and formulas are associated with each other to a reasonable extent that provide predictive plots that allow users to quickly, efficiently discern trends across several properties and materials. Users may store, retrieve, and visualize various properties and materials while also being able to edit the composition of each material tuned to their specific application. Overall, this database is a collaborative, comprehensive repository of biomaterial data and formulas. Registered users may contribute and validate data, allowing the database to be ever expanding.

Who can use this database?

The database is designed for a wide range of users including researchers, engineers of food science, nutritionist, as well as educators and students. Anyone with the need or intent to understand the physical properties of food materials and their relationships benefit from using this database.

Where should I start?

Depending the user's intentions for this database, starting points may vary. Users should read through **Section 2** of this manual to grasp the output of this database and get an introductory understanding. Users specifically looking to contribute data will benefit from **Section 3** and **Section 4**. For users with limited background in food properties or bioengineering may find **Section 6** most helpful. However, to understand the application of this database, *Use Examples* in **Section 5** will be most beneficial.

USE IN MANUFACTURING

- 1. Directionality in design
- 2. Predict "what if" scenarios for reformulations
- 3. Feasibility studies (trying out new ideas)
- 4. Quick answers, bypassing research
- 5. Storing proprietary materials

USE IN RESEARCH

- 1. Deeper understanding of materials
- 2. Quick access, bypassing detailed literature search
- 3. Quick estimation followed by sensitivity analysis
- 4. When you contribute, your work reaches everyone instantly

USE IN INSTRUCTION

- 1. Deeper understanding of materials. See example on Page
- 2. Deeper understanding of properties
- 3. Cross-property understanding
- 4. Complement a properties course with active learning
- 5. Learning modules for properties

SECTION 1: GETTING ORIENTED

This database has potential to aid in aspects of manufacturing, research, and education as detailed on the previous page. It is important that the user is familiar with the layout of the database and understands where to begin and find desired information. The goal of Data Retrieval is to deliver fast, accurate, and helpful predictions of various properties of materials. For new users, understanding where to find these materials, properties, and variables is crucial to their benefit in this resource.

Below are the tabs of the website that contain searching methods of all the materials, properties, formulas, and variables in the website. Descriptions of each tab and their function are as follows:

About BioMaterials

This site is meant for users to store, retrieve, and visualize physical properties of food materials. To start your adventure, type a food name into the input box and click 'Search'. This will bring you to a page listing the names of foods matching the input. For each food there will be two options, represented by little icons of a magnifying glass and a pencil. The magnifying glass will lead you to a page where you can view formula data corresponding to a chosen input food. The pencil icon will allow the input of new data points representing measurements of properties like temperature, density, thermal conductivity,etc... In the data view page, you can select data for plotting. For a given food, there will be choices for the y-axis variable, and the corresponding x-axis variables (These are provided such that there is a formula that maps from the x-axis to the chosen y-axis variable. Select the desired range for the x-axis variable and select both checkboxes. Given the prior selections, the site will automatically determine the possible formulae. If the formula requires composition information for the chosen food (E.G. is not a function of only the x-variable), input boxes will appear, filled with the food's composition information for the given properties if it exists (i.e. if there are measurements for carbohydrates and fat, those will be filled in), or 'NOT_FOUND' if the property is not found in the database. The 'Plot' button will chart the given formula and points. The update page will allow you to input data points or new formulas

© 2018 Copyright

Formulas

A formula relates a variable to another variable. For example, " $\#D = pow(10,(-4.4977 + (-581.28) / (115.71 - <math>\#Tk \sim)))$ " relates viscosity to temperature in Kelvin for certain oils. Some formulae require only one variable, such as the previous example, but others require composition information, such as the fat content or carbohydrate content.

SECTION 1.1: BIO-MATERIALS

This section contains a search method for all the food items in the database.

Step 1: Selecting the "Bio-Materials" tab will take the user to this page:

BioMate Bio-Material Data	erial ^{base}							
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart	
Find Bio	-Materials						Welcome Guest	Login Sign up
Enter Partial or	full Bio-Material Name							
Search								
© 2018 Copyright	t							

Step 2: Type the name of the desired food and select "Search". Here, the keyword "*Cheese*" was input. Note that the search results are alphabetized and includes all products that include the keyword in its name.

io-waterial Datat								
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart	
ind Bio	-Materials						Welcome Guest	Login Sign u
io-Material Nam	e							
Cheese								
Search								
2018 Copyright								
BioMate	rial							
io-Material Datab	ase							
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart	
							1101001110 00031	Login oldi
	Describer Com Dis	A destands	1					
Search F	Results for Bio	-Materia	als					
Search F	Results for Bio	-Materia	als					
io-Materials con atabase Search:	Results for Bio	-Materia	als					
Search F io-Materials con atabase Search: howing Page 1 o	Results for Bio	-Materia	als					
Search F io-Materials con atabase Search: howing Page 1 o	Results for Bio	-Materia	als					
Search F io-Materials con atabase Search: howing Page 1 o Start 1 2 3	Results for Bio taining text: cheese f 15 4 5 6 7 8 9 10 11 1	-Materia	Next Last Page					
io-Materials con atabase Search: howing Page 1 o Start 1 2 3 (Short Desc	Results for Bio taining text: cheese f15 4 5 6 7 8 9 10 11 1	-Materia	Next Last Page	с	itation			
Search F io-Materials con atabase Search: howing Page 1 o Start 1 2 3 (Short Desc BURGER KING,D	Results for Bio taining text: cheese 115 4 5 6 7 8 9 10 11 1 NOUBLE CHEESEBURGER	-Materia	Next Last Page	с	itation	Details * USD	NA Survey Materia	
io-Materials con atabase Search: howing Page 1 or start 1 2 3 4 Short Desc BURGER KING,D BURRITO, BEAN	Results for Bio taining text: cheese f15 () (-Materia	AIS Next Last Page	с	itation Q Q	Dotails * USE Details * USE	IA Survey Materia	1
io-Materials con atabase Search: howing Page 1 o start 2 2 3 4 Short Desc BURGER KING,D BURRITO, BEAN CHEESE FD,COL	Results for Bio taining text: cheese 15 4 5 6 7 8 9 10 11 1 would cheese frozen and cheese, frozen D PK, AMERICAN	-Materia	Next Last Page	c	itation Q Q	Details 'USE Details 'USE Details 'USE	IA Survey Materia IA Survey Materia	1
io-Materials con atabase Search: howing Page 1 o shart 2 3 • Short Desc BURGER KING,D BURRITO, BEAN CHEESE FD,COL	Results for Bio taining taxt: cheese 15 4 5 6 7 8 9 10 11 1 NOUBLE CHEESEBURGER AND CHEESE, FROZEN D PK, AMERICAN, VITAM	12 13 14 15	Next Last Page	c	itation Q Q Q	Details · USC Details · USC Details · USC Dotails · USC	IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia	1
Search F io-Materials con atabase Search: howing Page 1 o isant 2 2 3 4 Short Desc BURGER KING,D BURGER KING,D BURGER KING,D CHEESE FD,PAS	Results for Bio taining text: cheese r15 4 5 6 7 8 9 10 11 1 OUBLE CHEESEBURGER AND CHEESE, FROZEN D PK, AMERICAN, VITAM T PROCESS, AMERICAN, VITAM	12 13 14 15	AIS Next [Last Page]	c	itation Q Q Q Q Q	Details CUSC Details CUSC Details CUSC Details CUSC Details CUSC	IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia	
CHEESE FD,PAS	Results for Bio taining text: cheese 115 4 6 6 7 8 9 10 11 1 would cheese frozen D PKAMERICAN T PROCESS, AMERICAN, WITAN T PROCESS, AMERICAN, WITAN T PROCESS, SWISS	IZ 13 14 15	Next Last Page	c	itation Q Q Q Q Q Q	Dottalis - USC Dottalis - USC Dottalis - USC Dottalis - USC Dottalis - USC Dottalis - USC	IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia	
Search F Io-Materials con tabases Search- howing Page 1 of Short Desc BURGER KING, D BURGER KING, D BURGER KING, D CHEESE FD, PAS CHEESE FD, PAS CHEESE FD, PAS CHEESE FD, PAS	Results for Bio taining taxt: cheese 15 4 5 6 7 8 9 10 11 1 NOUBLE CHEESEBURGER AND CHEESE, FROZEN D PK, AMERICAN, VITAN T PROCESS, AMERICAN, VITAN T PROCESS, AMERICAN, VITAN T PROCESS, SWISS MITATION	I2 13 14 15	Next Last Page	C	tation Q Q Q Q Q Q Q Q Q Q	Details 1050 Details 1050 Details 1050 Details 1050 Details 1050 Details 1050 Details 1050	IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia	
Search F I-o-Material con atabase Search howing Page 1 o short Desc BURGER KING,D BURGER KING,D BURGER KING,D BURGER KING,D BURGER KING,D BURGER KING,D CHEESE FD,PAS CHEESE FD,PAS CHEESE FD,PAS CHEESE FOOD,I CHEESE FOOD,I CHEESE FOOD,I CHEESE FOOD,I CHEESE FOOD,I CHEESE FOOD,I CHEESE FOOD,I	Results for Bio taining text: cheese 115 4 5 6 7 8 9 10 11 1 0UBLE CHEESEBURGER AND CHEESE, FROZEN D PK.AMERICAN T PROCESS_AMERICAN, WTO/ T PROCESS_AMERICAN, WTO/ T PROCESS_AMERICAN, WTO/ CT PAST PROCESS_AMERICAN CTAST PROCESS_AMERICAN	IN D FORT	Next Last Page	c	tation Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC	A Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia	
CHEESE PRODU	Results for Bio taining text: cheese 115 115 116 117 WUBLE CHEESEBURGER AND CHEESE, FROZEN D PK.AMERICAN T PROCESS, AMERICAN, WITAN T PROCESS, AMERICAN, WOY, T PROCESS, SWISS MITATION CT.PAST PROCESS, AMERICAN CT.PAST PROCESS, AMERICAN	IN DEPARTMENT	Next Last Page	C		Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC Dotalis VUSC	IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia IA Survey Materia	

Start 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Next Last Page

C 2018 Copyright

Step 3: To reduce the amount of search results, include further description by appending the modifier or descriptor to the end of the word, separating by a comma. Ensure no spaces between the words, just a single comma. In this example, the keyword "*Cheese, blue*" was entered to find Blue Cheese (instead of "Cheese" alone). Refer to **Section 6.1** for further details on search terms.

BioMate Bio-Material Datab	rial							
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart	
Search F Bio-Materials com Database Search: Showing Page 1 or Start Last Pag Short Desc	Results for Bio taining tat: Cheese,blue	-Materia	ls				Welcome Guest	Login Sign up
CHEESE,BLUE	F 4		Q Details	USDA Survey Mate	rial			
Start 1 Last Pag	e							
© 2018 Copyright								

Step 4: Select "Details" to inspect the item in higher detail. Use the ID number to refer to this exact item in **Section 2: Data Retrieval**. In this example, the ID number for Blue Cheese is 1004 (circled below).

ID	1004	
U.S.D.A Survey Data :	Ves	
Short Desc	CHEESE,BLUE	
Long Desc	Cheese, blue	
Common Name		
Mfg Name		
usdaSurvey	Υ	
Refuse Desc		
Refuse Percentage	0.0	
Scientific Name		
Factors	nFactor: 6.38 pFactor: 4.27 fFactor: 8.79 choFactor: 3.87	
Citation		
	Cia	os

SECTION 1.2: BIO-MATERIAL COMPOSITION

The Bio-Material Composition page allows users to access detailed compositional data of various products. Specific information, such as protein, water and cholesterol content value, can be found with ease. This page is essential for users to understand the precise makeup of products.

Step 1: Selecting the "Bio-Material Composition" tab (circled below) will take the user to this page:

BioMaterial Bio-Material Database							
Bio-Materials Bio-M	Naterial Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Bio-Material	Compositi	on		•		Compo	Alcome Guest Login Sign up
Composition Values	for Material:						
Composition Id	Composition	Name	Symbol	UOM	Value	Min. Value	max. Value

```
© 2018 Copyright
```

Step 2: Enter a biomaterial or food product in the "All Materials" tab circled above. Select "Composition Values" to bring the following page containing the values. (Here, the ID number "4542" was used instead of "FAT, CHICKEN", but either will work).

BioMateria Bio-Material Database	al							
Bio-Materials E	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-prope	erty Chart	Property Ne	w Chart
Bio-Mater	ial Composit	ion					Welcom	e Guest Login Sign up
FAT, CHICKEN						•	Composition	Values
Composition Valu	ues for Material: FAT,	CHICKEN						
Composition Id	Composition Name	e	Sy	mbol	UOM	Value	Min. Value	max. Value
203	Protein		PF	ROCNT	g	0.0		
204	Total lipid (fat)		FA	т	g	99.8		
205	Carbohydrate, by di	ifference	CH	HOCDF	g	0.0		
207	Ash		AS	SH	g	0.0		
208	Energy		EN	IERC_KCAL	kcal	900.0		
221	Alcohol, ethyl		AL	.C	g	0.0		
255	Water		W	ATER	g	0.2		
262	Caffeine		CA	AFFN	mg	0.0		
263	Theobromine		TH	IEBRN	mg	0.0		
268	Enery		EN	IERC_KJ	kJ	3766.0		
269	Sugars, total		SL	JGAR	g	0.0		
291	Fiber, total dietary		FIE	BTG	g	0.0		
301	Calcium, Ca		CA	A	mg	0.0		
303	Iron, Fe		FE		mg	0.0		

SECTION 1.3: BIO-FORMULA

The Bio-Formula page enables users to locate various predictive formulas related to multiple variables pertaining to the respective material. The functionality is essential for users who need to apply predictive modeling and simulates the behavior of products under different conditions. To begin, select the "Bio-Formula" tab and search for the desired formula. Select "Details" for additional information regarding the description and citation of the formula.

Step 1: Selecting the "Bio-Formula" tab (circled below) will take the user to this page:

BioMate Bio-Material Datab	erial						
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Search Bio-Fo	ormula -Formula Name or Description						Welcome Guest Login Sign up
Formula's cor	ntaining text :						
Name	Formula		Description			Citation	

© 2018 Copyright

Step 2: Selecting "Search" (circled above) will appear all the formulas in the database. Enter the formula name or description in the search tab to narrow search results.

BioMater Bio-Material Databa	'ial 150									
Bio-Materials	Bio-Material Comp	osition Bio-Formula	Bio-Material Groups	Bio-Vari	ables Bio-	property Ch	art Property	New Chart		
Search Bio-For	mula							Welcome Guest	Login Sign u	qu
Enter Partial Bio-	Formula Name or De	scription						Search		
Showing Page 1 of Start 1 2 3 4 Formula's cont	76 567891 raining text :	Next Last Page								
Name		Formula	1	Description	Citation					
a_LW		((47.8506- 8.1285*10^-2*Tk+8.498 (556047- 3763.55*Tk+5.56395*Tk (p*10^-6+3.28892*10^- 2.65933*10^-20*p^3)-2: (p*10^-6+3.28892*10^- 2.65933*10^-20*p^3))/(33.9150*Tk+3.65873*10 5.89617*10^-4*Tk*34 (p*10^-6+3.28892*10^- 2.65933*10^-20*p^3)))*	5*10^-5*Tk^2)+ 6 ^2+5.59682*10^-3*Tk* 7 16*p^2- .5622* 16*p^2- 428.067- ^-1*Tk^2- 16*p^2- 16*p^2- 10^-4	Thermal expansivity of liquid water	Chizov and Nagornov(199	31).Thermodynar		ttails		
λ_S.TYPHIMURIU	M_EXP_CHICKEN	exp(26.9/(T-0.99))	L S t	Lag time for S. typhimurium in chicken b	Thomas P Os and validat	car, Developmer	nt Q De	etails		
λ_S.TYPHIMURIU	M_POL_CHICKEN	(31.0/(T-6.4))^1.3	L S t	Lag time for S. typhimurium in chicken b	Thomas P Os and validat	car, Developmer	nt Q De	etails		

Step 3: Selecting "Details" of a given group, then "+ Show More" in the pop-up tab will reveal all associated biomaterials, bio-groups, and bio-formulas.

BioMater Bio-Material Databa	Bio-Formula I	Details	
Bio-Materials	ID	64	
Search Bio-Fo	Name	a_LW	Login Sign up
Enter Partial Bio-	Formula	((47.8506-8.1285'10^-2"Tk+8.4985'10^-5"Tk^2)+(556047-3763.55"Tk+5.56395"Tk^2+5.59682'10^-3"Tk* (p*10^-6+3.28892'10^-16"p^2-2.65933"10^-20"p^3)-27.5622'(p'10^-6+3.28892'10^-16"p^2- 2.65933"10^-20"p^3))/(-428.067-33.9150"Tk+3.65873"10^-1"Tk^2-5.89617"10^-4"Tk^3+(p*10^-6+3.28892"10^-16"p^2- 2.65933"10^-20"p^3)))/(-4	zh
Showing Page 1 of	Y-axis Variable	a - Isobaric Thermal Expansivity	
Start 1 2 3 4	Variable ID	10010	
Formula's con	Formula Desc	Thermal expansivity of liquid water	
a_LW	Citation	Chizov and Nagornov(1991). Thermodynamic properties of ice, water and their mixture under high pressure.	
	DOI	Not found	
	Approved	0	
	Added by	biomaterial@yopmail.com	
	Last Updated By	biomaterial@yopmail.com	
	Initially Created at	2019-08-20 19:59:38.0	
	Last Upadted at	2022-06-08 12:59:34.0	
λ_S.TYPHIMURIU	+ Show M	More	
Activity_Water_IFF		Close	
		water activity and	

SECTION 1.4: BIO-MATERIAL GROUPS

The Bio-Material Group search function enables users to efficiently locate all the groups and the associated materials within the database. This feature helps streamline the process of finding relevant materials belonging to specific groups.

Step 1: Selecting the "Bio-Material Groups" tab (circled below) will take the user to this page:

BioMate Bio-Material Datat	BioMaterial io-Material Database										
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart				
Search Bio M	aterial Group		\smile				Welcome Guest Login Sign up				
Enter Bio-Group	Name						Search				
Enter Bio-Group	Name						Search				

Step 2: Selecting "Search" will appear some of the groups in the database, to reveal more select "Load More Groups". Enter the group name or description in the search tab to narrow search results.

BioMaterial Bio-Material Database						
Bio-Materials Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Search Bio Material Group						Welcome Guest Login Sign up
Enter Bio-Group Name						Search
Group's containing text :						
Group Name						
NatesGroup				٩	Details	
Dairy and Egg Products					Details	
Spices and Herbs				Q	Details	
Load More Group						
© 2018 Copyright						

Step 3: Selecting "Details" (circled above) of a given group, then "+ Materials" in the pop-up tab will reveal all the materials associated with the group:

BioMater Bio-Material Datab	Bio-Material Group Details		×
Bio-Materials	ID	100	
Search Bio Ma	GroupName	Dairy and Egg Products	t Login Sig
	Added By	null	
Enter Bio-Group	Updated By	biomaterial@yopmail.com	20
	Created At	2021-08-17 18:46:29	
Group's contai	Updated At	2022-04-28 18:23:46	
Group Name	+ Materials		
Natescioup	BUTTER, WITH SALT		
Dairy and Egg Pro	BUTTER,WHIPPED,W/ SALT		
Spices and Herbs	BUTTER OIL, ANHYDROUS		
	CHEESE,BLUE		
Load More Group	CHEESE, BRICK		
	CHEESE,BRIE		
© 2018 Copyright	CHEESE,CAMEMBERT		

SECTION 1.5: BIO-VARIABLES

The Bio-Variables search function enables users to find all variables used in the database. This feature provides an organized, efficient method to retrieve and review different bio-variables and their relation to formulas.

Step 1: Selecting the "Bio-Variables" tab (circled below) will take the user to this page:

Bio-Material Database								
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart	
Find Bio Bio-Variable Nam	-Variables			Ŭ			Welcome Guest	Login Sign up
Enter Partial or f	ull Bio-Variable Name							
Search								

© 2018 Copyright

Step 2: Selecting "Search" will appear an alphabetized list of variables in the database.

Bio-Material Composition Bio-Formula Bio-Material Groups Bio-Variables Bio-property New Chart Welcome Guest Logan Gue	BioMaterial Bio-Material Database								
Welcome Guest: Login Sig Search Results for Bio-Variable Bio-Variable Name Enter Partial or full Bio-Variable Name Search Results for Bio-Variable Search Results For Bio-Variable Search Results For Bio-Variable Search Results For Bio-Variable Cannot De deleted. Source Variable Cannot be deleted. Sarch Variable Cannot be deleted. Q Details *Referenced Variable Cannot be deleted. % Activity % a - Q Details *Referenced Variable Cannot be deleted. *Referenced Variable Cannot	Bio-Materials Bio-Material Cor	nposition Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property Cha	art Property	New Chart		
Search Results for Bio-Variable Bio-Variable Name Enter Partial or full Bio-Variable Name Start Partial or full Bio-Variable Name Search Name Desc Symbol UOM Q Details "Referenced Variable cannot be deleted. Q Details "Referenced Variable cannot be deleted. % Activity % a % a - Q Details "Referenced Variable cannot be deleted.						V	Velcome Guest	Login Sign	up
Bio-Variable Name Enter Partial or full Bio-Variable Name Star much be between 1 and 300 Sarch Bio-Variables containing text: Bio-Variables containing text: Showing Page 1 of 24 Start 1 2 3 4 5 6 7 8 9 Next Last Page VOM Name Desc Symbol UOM Image: Colspan="4">Image: Colspan="4"<	Search Results for	or Bio-Variable	e						
Enter Partial or full Bio-Variable Name stormers the between 1 and 300 Search Bio-Variables containing text: Showing Page 1 of 24 Staft 1 2 8 4 5 6 7 8 9 Next Last Page Name Desc Symbol UOM Q Details "Referenced Variable cannot be deleted. % Activity % Activity % a - Q Details "laptement be deleted. "Referenced Variable cannot be deleted. "Referenced Variable cannot be deleted.	Bio-Variable Name or Symbol								
sizement be between 1 and 300 Search Bio-Variables containing text: Showing Page 1 of 24 Start 2 3 4 5 6 7 8 9 Next Last Page Name Desc Symbol UOM Q Details "Referenced Variable cannot be deleted. % Activity % a - Q Details "Referenced Variable cannot be deleted.	Enter Partial or full Bio-Variable Nam	10							
Search Bio-Variables containing text: Showing Page 1 of 24 Start 2 2 3 4 5 6 7 8 9 Next Last Page Name Desc Symbol UOM Q Details "Referenced Variable cannot be deleted. % Activity % Activity % Activity % a	size must be between 1 and 300								
Bio-Variables containing text: Showing Page 1 of 24 Start 2 3 6 7 8 Next Last Page Name Desc Symbol UOM Image: Colspan="4">OM Image: Colspan="4">Image: Colspan="4"Om Image: Colspan="4"Om Image: Colspan="4"Om Image: Colspan="4"Om Image: Colspan="4"Om Image: Colspan="4"Om Image: Colspan="4"Om Image: Colspan="4"Om Image:	Search								
Showing Page 1 of 24 Start 1 2 3 4 5 6 7 8 9 Next Last Page Symbol UOM Name Desc Symbol UOM Image: Comparison of the comparison o	Bio-Variables containing text:								
Start 2 3 4 6 7 8 Next Last Page Name Desc Symbol UOM Q. Details "Referenced Variable cannot be deleted. Q. Details "Referenced Variable cannot be deleted. % Activity % a - Q. Details "Referenced Variable cannot be deleted.	Showing Page 1 of 24								
Name Desc Symbol UOM Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol Image: Comparison of the symbol	Start 1 2 3 4 5 6 7 8 9	Next Last Page							
Q Details "Referenced Variable cannot be deleted. Q Details "Referenced Variable cannot be deleted. % Activity % a - Q Details "Referenced Variable cannot be deleted. "Referenced Variable cannot be deleted.	Name	Desc	Symbol	UO	м				
% Activity % Activity % a - Q. Details *Referenced Variable cannot be deleted.					Q Detai	ils d Variable canno	t be deleted.		
% Activity % Activity % a - Q. Details *Referenced Variable cannot be deleted.					Q Detai	ils d Variable canno	t be deleted.		
	% Activity	% Activity	% a	-	Q Detai	ils I Variable canno	t be deleted.		
Activation energy Energy of activation E_a J/mol	Activation energy	Energy of activation	E_a	J/m	ol Q Detai	ils d Variable canno	t be deleted.		
ACTIVITY The ratio of the par as - Q Details "Referenced Variable cannot be deleted.	ACTIVITY	The ratio of the par	as	-	Q Detai	ils d Variable canno	t be deleted.		
Activity (uM/s) Activity (uM/s) A_uMs uM/s Q Details 'Referenced Variable cannot be deleted.	Activity (uM/s)	Activity (uM/s)	A_uMs	uM/	's Q Detai	ils d Variable canno	t be deleted.		

Step 3: Select "Details" and "+ Show More" reveals all the formulas and Y-axis variables that use this bio-variable.

BioMate	Bio-Variable Details		×			
Bio-Materials	ID	10173				
	Name	Activation energy	t Login Sign up			
Searcn F	Desc	Energy of activation for Arrhenius equations				
Bio-Variable Name	SI Unit	E_a	_			
size must be betwe	UOM	J/mol				
Search	Added by	ig232@cornell.edu				
Bio-Variables contr	Last Updated By					
Showing Page 1 of	Initially Created at	2023-07-18 17:21:59.0				
Start 1 2 3 4	Last Upadted at	2023-07-18 17:21:59.0				
	+ Show More	this BioVariable:				
	1. CO2_EVOL_BLUEBERRY_BLUE 2. CO2_EVOL_BLUEBERRY_BLUE	RAY_5C RAY_15C				
% Activity	3. CO2_EVOL_BLOEBERHY_BLOE 4. DISP_VISCOSITY_DILUTE_REG 5. DISP_VISCOSITY_CONC_REGI 6. DISP_VISCOSITY_CONC_REGI	HAT_200 IME ME_HEX_PACKING ME_SPHERICAL_PACKING				
Activation energy	6. DISP_VISCOSITY_CONC_REGIME_SPHERICAL_PACKING 7. DIELECTRIC_DIPOLAR_CONST_1929 8. DIELECTRIC_DIPOLAR_LOSS_1929 9. ortical membrane branchous potential					
ACTIVITY	10. VISCOSITY_ORANGE_JUC_PEF 11. beta_mixture 12. c_mixture	RA_H				
Activity (uM/s)	All Formulas which reference	this BioVariable in Y-axis:				
activity coefficient		Clos	Ge			

Helpful Tip: Additionally, descriptions of each variable used in formulas can be found in the Index of this manual. See page X.

SECTION 1.6: BIO-PROPERTY

The Bio-Variables search function allows users to display the discrete data for a variable or dataset in the database. Enabling users to quickly plot this data helps them efficiently visualize the recorded and measured data of this database.

Step 1: Selecting the "Bio-Property" tab (circled below) will take the user to this page:

Bio-Material Data							
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Search Bio-P	roperty (Discreet Data)						Welcome Guest Login Sign up
Enter Dataset N	ame or Y-Axis Variable Name						Search
Bio-Property	Discreet Data) containin	g text :					
			WW - 11		V Variabi		

© 2018 Copyright

Step 2: Begin typing in a desired property. See the "Glossary" section of this manual for listed properties. Below, "consistency coefficient" is used.

BioMaterial Bio-Material Database							
Bio-Materials Bio-Material Composition	Bio-Formula Bi	io-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart	
Search Bio-Property (Discreet Data)						Welcome Guest	Login Sign u
Consistency coefficient						Search	n
Showing Page 1 of 1							
Start 1 Last Page							
Bio-Property(Discreet Data) containing	g text : Consister	ncy coefficient					
Name	Material	Y-Variab	le	X-Variables			
Consistency coefficient for pasteurized passion	PASSION-FRUIT	Consiste	ency	1. Brix degrees	Q Deta	ills	
iruit juice	JUC, TEL, NAW	coenicie	nt	2. Temperature in (C		
Consistency coefficient for VF6 tomato juice	tomato juices	Consiste	ency	1. Temperature in (C Q Deta	ills	
	(diodp)	oounoio		2. Concentration_s	solid		
Consistency coefficient of frozen concentrated orange juice	refrigerated orang	e juice Consiste coefficie	ency	1. Temperature in (C Q Deta	ils	
				2. Pulp content			
Showing Page 1 of 1							
Start 1 Last Page							
© 2018 Copyright							

Step 3: Of the results, select "Details".

rial Data	roperty (Discreet Data) Details			×
laterials ID		765		1
Datas	set Name	Consistency coefficient for VF6 tomato juice)	ist Login S
Mate	rial Name	tomato juices (Group)		
stency co Y-Axi	s Variable	Consistency coefficient		irch
X-Axi g Page 1 c	is Variables	1. Temperature in C		
roperty(2. Concentration_solid		
ce Cor	sistency coefficient	Temperature in C Quick Plot	Concentration_solid	
tency coe 0.22	23	32.22	5.8	
0.27	,	48.89	5.8	
0.37	,	65.56	5.8	
stency coe 2.0		32.22	12.8	
juice	1	48.89	12.8	

Step 4: Select "Quick Plot" of either options available.

SECTION 2: DATA RETRIEVAL

SECTION 2.1: ESTIMATING PROPERTIES OF A FOOD MATERIAL VS. TEMPERATURE, COMPOSITION, ETC.

This section is an introduction to the charting portion of the database that allows users to predict how a specific property changes with varying conditions. Understanding of these trends and variations will allow users to optimize their own condition parameters that can be crucial to developing products or improving upon existing ones.

Step 1: Go to <u>http://167.71.237.183:8080/home</u>

Step 2: Select "Chart Property" below.

About BioMaterials

This site is meant for users to store, retrieve, and visualize physical properties of food materials. To start your adventure, type a food name into the input box and click 'Search'. This will bring you to a page listing the names of foods matching the input. For each food there will be two options, represented by little icons of a magnifying glass and a pencil. The magnifying glass will lead you to a page where you can view formula data corresponding to a chosen input food. The pencil icon will allow the input of new data points representing measurements of properties like temperature, density, therma conductivity,etc... In the data view page, you can select data for plotting. For a given food, there will be choices for the y-axis variable, and the corresponding x-axis variables (These are provided such that there is a formula that maps from the x-axis to the chosen y-axis variable. Select the desired range for the x-axis variable and select both checkboxes. Given the prior selections, the site will automatically determine the possible formulae. If the formula requires composition information for the chosen food (E.G. is not a function of only the x-variable), input boxes will appear, filled with the food's composition information for the given properties if it exists (i.e. if there are measurements for carbohydrates and fat, those will be filled in), or 'NOT_FOUND' if the property is not found in the database. The 'Plot' button will chart the given formula and points. The update page will allow you to input data points or new formulas © 2018 Copyright

Step 3: Under "Material 1." start typing the material name.
 Step 4: Select from the suggested list in the dropdown.

		Material 1	
Material	chic		
V Avia	4542	FAT, CHICKEN	
T-AXIS	5000	CHICKEN, BROI	
X-Axis	5001	CHICKEN, BROIL FRYERS, MEAT&	
X-Axis start value	5002	CHICKEN, BROIL FRYER, MEAT&S	
X-Axis end value	5003	CHICKEN,BROIL FRYERS,MEAT&	
Formula			
	Measured Data		

Formulas

A formula relates a variable to another variable. For example, "#D = pow(10,(-4.4977 + (-581.28) / (115.71 + #Tk-)))" relates viscosity to temperature in Kelvin for certain oils. Some formulae require only one variable, such as the previous example, but others require composition information, such as the fat content or carbohydrate content.

Step 5: In the Y-axis row, under your chosen material, click on dropdown menu and select the property of your interest. There may be a delay (15-20 s) before the next step is possible—please wait for it.

Step 6: In the X-axis row, under your chosen property, click on the dropdown to select the variable against which you will plot your property.

	Material 1			
Material	CHICKEN, BROILER, RC			
Y-Axis	Thermal Conductivity ~			
X-Axis	Temperature in C			
X-Axis start value	Temperature in C porosity Thermal conductivity factor			
(-Axis end value	Weighting Parameter PROCNT FAT			
Formula	CHOCDF ASH WATER			
	FIBTG			

Step 7: In the X-Axis start value, under your chosen property, enter the lowest value of the variable you chose in Step 6.

Step 8: In the X-Axis end value, under your chosen property, enter the highest value of the variable you chose in Step 6.

Step 9: In the Formula row, under your chosen property, click on the dropdown to select among the prediction formulas you want to use for your selected property. Again, there may be a delay (15-20 s) for the dropdown list to appear—please wait for it.

	Material 1
Material	CHICKEN, BROILER, RC*
Y-Axis	Thermal Conductivity ~
X-Axis	Temperature in C
X-Axis start value	10
X-Axis end value	20
Formula	K_PARALLEL : K_W/ ~
	K PARALLEL: K WATEP'' K NONPORCOS: 11((WATI K_SERIES: 1/((WATER/10 K_MIX: K_SERIES*g_1+K_] K_C: (1/4)*((3*(WATER/10) K_S: K_PROCNT*(PROCN K_KRISCHER: 1/((1-J)/K K_GEOMETRIC_MEAN: pc K_KRISCHER2: 1/((1-J)/K_ K_WATER: 0.57109 + (1.76

Step 10: Check against the "Status" row to make sure the button below "Basic Data Entered" is green

Step 11: Click on "Material Composition 1" to see a window open up showing all the composition data for the selected material from the database. This window will also show variables from the formula that are not selected in 'X-axis' row. You can proceed or change a composition variable by typing your value under the "Change Value" column.

Status Material Composition Values	1. Basic Data Entered : 2. Composition Data Entered: Material Composition 1	1. Basic Data Entered : Composition Data Enter NA Material Composition	1. Basic Data Entere ered: 2. Composition Data NA 2	d : 1. Basic Data Entered : Entered: 2. Composition Data Entered: NA tion 3 Material Composition 4
		М	aterial Composition 1	
	Material	Unit	USDA Value	Change Value(Optional)
	Water	g	42.41	42.41
	AIR	g	0	0
	ICE	g	0	0
	Protein	g	21.4	21.4
	Carbohydrate, by difference	g	2.34	2.34
	Total lipid (fat)	g	28.74	28.74
	Fiber, total dietary	g	0	0
	Ash	g	5.11	5.11

Chart Bio-Material Formula

Step 12: Click on "Chart Biomaterial Formula" to plot

Status	1. Basic Data Entered : 2. Composition Data Entered:	1. Basic Data Entered : 2. Composition Data Entered	1. Basic Data Entern 2. Composition Data NA	a Entered: 1. Basic Dat 2. Composit	1. Basic Data Entered : 2. Composition Data Entered: NA	
Material Composition Values	Material Composition 1	Material Composition 2	Material Compos	Material	Composition 4	
		Mate	erial Composition 1			
	Material	Unit	USDA Value	Change Value(Optional		
	Water	g	42.41	42.41		
	AIR	g	0	0		
	ICE	g	0	0		
	Protein	g	21.4	21.4		
	Carbohydrate, by difference	g	2.34	2.34		
	Total lipid (fat)	g	28.74	28.74		
	Fiber, total dietary	g	0	0		
	Ash	g	5.11	5.11		
		Char	rt Bio-Material Formula			

Step 13: You should see a plot like the one below:

SECTION 2.2: ESTIMATING ONE PROPERTY FOR MULTIPLE MATERIALS

This section allows users to compare a single property across different food materials. This comparison may help in selection of material by identifying which ones meet a desired criterion, depending on the application. Charting these materials and their respective properties may reveal how they respond to certain conditions and identify trends and directionality that are valuable in formulating new or changing existing products.

Step 1: Repeat Steps 1-11 for one material

Step 2: Repeat Steps 1-11 for the second material, entering information in the following column as below

Material	CHICKEN, BROILER, ROT	CHEESE,EDAM *
Y-Axis	Thermal Conductivity ~	Thermal Conductivity ~
X-Axis	Temperature in C	
X-Axis start value	10	
X-Axis end value	60	
Formula	K_PARALLEL : K_WA1 ~	K_SERIES : 1/(((WATE ~

Step 3: Repeat for up to five material-formula combinations.

Step 4: Click on "Chart Biomaterial Formula" to plot (Section 1, Step 12).

Step 5: You should see a plot like this below:

SECTION 2.3: ESTIMATING MULTIPLE PROPERTIES OF THE SAME MATERIAL

Estimating multiple properties of the same material allows users to gain a comprehensive understanding of how these properties interrelate and provides a holistic view that may be essential for optimizing processing methods, storage, and transportation of food product.

Step 1: Repeat Steps 1-11 for a material

Step 2: Repeat Steps 1-11 for the same material, entering information in the following column as below. Starting from "Y-axis," entries will be different except for "X-axis" that has to stay the same.

	Material 1	Material 2
Material	CHICKEN, BROILER, RC	CHEESE,BLUE
Y-Axis	Thermal Conductivity ~	Density
X-Axis	Temperature in C	
X-Axis start value	10	
X-Axis end value	20	
Formula	K_PARALLEL : K_W/ ~	RHO_MIX : 1/(((WAT ~
	Measured Data	select ~

Step 3: Repeat for up to five materials.

Step 4: Step 12: Click on "Chart Biomaterial Formula" to plot

Step 5: You should see a plot like this below:

SECTION 2.4: VISUALIZING ONE PROPERTY VS. ANOTHER FOR THE SAME MATERIAL

This subsection is useful to the user by exploring the relationship between two specific properties of a material that may help identify potential correlations, trade-offs, and trends between two properties to provide insight into how they may influence each other or be affected by changes in composition and condition.

Step 1: Repeat Section 1: Steps 1-11 for a material in column 1 titled "Material 1".

Step 2: Repeat Section 1: Steps 1-11 for the same material in column 2 titled "Material 2", using the same material in column 1.

	Material 1	Material 2	Material 3	Material 4	Material 5
Material	BUTTER,WITH SALT	BUTTER, WITH SALT *	Inter Bio-material Name 3 *	Inter Bio-material Name 4	Enter Bio-material Name 5
Y-Axis	Specific Heat V	Density V	~	~	
X-Axis	Temperature in C			1	,
X-Axis start value	0				
X-Axis end value	15				
Formula	C_PICE : 2.12+7.8*(V	RHO_MIX:1/(((WAT 🗸	~	~	[· · · · ·
Measured Data					
Status	1. Basic Data Entered :	1. Basic Data Entered :	1. Basic Data Entered :	1. Basic Data Entered :	1. Basic Data Entered :
	2. Composition Data Entered:	2. Composition Data Entered:	2. Composition Data Entered:	2. Composition Data Entered:	2. Composition Data Ente
	NA	0	NA	NA	NA
Material Composition /alues	NA Material Composition 1	Material Composition 2	NA Material Composition 3	Material Composition 4	Material Composition 5
Material Composition <i>f</i> alues	NA Material Composition 1	Material Composition 2	Material Composition 3	Material Composition 4	Material Composition
flaterial Composition falues	NA Material Composition 1	Material Composition 2 Materia Unit	MA Material Composition 3 al Composition 2 JSDA Value	NA Material Composition 4	Material Composition :
Aaterial Composition falues	Material Composition 1 Material Composition Water	Material Composition 2 Materia Unit t	Material Composition 3 al Composition 2 JSDA Value 15.87 15.87	NA Material Composition 4 Change le(Optional)	NA Material Composition :
flaterial composition falues	Material Composition 1 Water Water	Material Conposition 2 Material Unit g	NA Material Composition 3 al Composition 2 JSDA Value 15.87 15.87	NA Material Composition 4 Change e(Optional)	NA Material Composition
Material Composition falues	Material Composition Water AIR	Material Conposition 2 Material Unit 9 9	NA Materia Composition 3 al Composition 2 JSDA Value 15.87 0 0	Material Composition 4 Material Composition 4 Change te(Optional)	NA Material Composition
Aaterial Composition falues	Material Composition Water AIR ICE	Marketa Composition 2 Market Unit u g g g g	NA Material Composition 3 al Composition 2 JSDA Value 15.87 0 0 0 0	Material Composition 4 Change te(Optional)	NA Material Composition 5
Material Composition falues	Material Composition Water AIR ICE Protein	Marana Composition 2 Materia Unit g g g g g g	NA Material Composition 3 al Composition 2 JSDA Value 15.87 0 0 0 0 0 0.85	Material Composition 4 Change re(Optional)	NA Material Composition
Aaterial Composition Aalues	Material Composition 1 Material Composition Water AIR ICE Protein Carbohydrate, by difference	Material Composition 2 Material Unit 9 9 9 9 9	NA Material Composition 3 al Composition 2 JSDA Value 15.87 0 0 0 0 0 0 0 0 0.85 0.06	Material Composition 4 Material Composition 4 Change e(Optional)	NA Material Composition 1
Material Composition <i>f</i> alues	Material Composition 1 Material Composition Water AIR ICE Protein Carbohydrate, by difference Total lipid (fat)	Maxima Composition 2 Materia Unit t 9 9 9 9 9	NA Material Composition 3 al Composition 2 JSDA Value 15.87 0 0 0 0.85 0.06 0.06 81.11	NA Material Composition 4 Change (e(Optional)	NA Material Composition
Material Composition falues	Material Composition 1 Material Composition Water AIR ICE Protein Carbohydrate, by difference Total lipid (fat) Fiber, total dietary	Markina Composition 2 Materia Unit t 9 9 9 9 9 9	NA Material Composition 3 al Composition 2 JSDA Value 15.67 0 0 0 0.85 0.06 81.11 0 0	Material Composition 4 Change e(Optional)	NA Material Composition 1

Step 3: Select "Chart Bio-Material Formula" to plot the material properties as shown below.

SECTION 2.5: VISUALIZING DIFFERENT PROPERTIES AND DIFFERENT MATERIALS

This subsection is helpful in providing a visual of the behavior of different materials during the cooking process. Understanding how certain properties tied to certain materials change as temperature increases is important in optimizing even and proper and precise cooking and heating.

For this section, it is helpful that the two materials chosen are associated with each other and that the respective properties are important to consider during the heating process. Here, chicken fat and salted butter are chosen with thermal conductivity and dielectric loss, respectively.

Step 1: Repeat Section 1: Steps 1-6 for a material in column 1 titled "Material 1".

Step 2: Repeat Section 1: Steps 1-6 for a different material in column 2 titled "Material 2".

Step 3: Ensure that the X-axis chosen is "Temperature in C" and that the range covers the standard cooking temperatures for the given material. Continue by repeating Section 1: Steps 7-11 for both materials.

Step 4: Select "Chart Bio-Material Formula" to plot the material properties as shown below.

Multiple formulas appear under the 'Formula' tab when charting materials, which one should be used?

Many of the materials in this database and associated properties have multiple formulas associated with them that may be shown in the dropdown of the "Formula" tab in "Chart Property" Below is an example of a user trying to observe the change in density with temperature of Blue Cheese (1004), with the drop of formulas shown as well:

The user has choices between RHO_MIX, RHO_POROUS, RHO_WATER, and RHO_CHOCDF. When choosing a formula, the user must define the context and intention of charting this property for the given material and understand what each formula actually produces. The user may investigative the formula further by viewing details of the formula (Section 1.3).

In this example, RHO_MIX is used to calculate the mixed density of a material that is a mixture of various components, which would be useful for dealing with heterogenous materials, which would apply to most in the database. RHO_POROUS considers the porosity and mixed density and may be used for porous or highly permeable materials, like Swiss Cheese. RHO_WATER provides the density of water as a function of temperature. Lastly, RHO_CHOCDF should be used for materials with high carbohydrate content, which may be observed in the material components, shown below for Blue Cheese.

		Material Composition	1
Material	Unit	USDA Value	Change
Composition			Value(Optional)
Water	g	42.41	42.41
AIR	g	0	0
105			
ICE	g	0	0
Protein	g	21.4	21.4
		0.04	
difference	g	2.34	2.34
Total lipid (fat)	q	28.74	28 74
	0		20.14
Fiber, total dietary	g	0	0
Ash	a	5 11	
ASIT	9	0.11	5.11

SECTION 3: DATA INPUT

This portion of the manual provides a comprehensive guide for users wishing to contribute their own findings or literature to this database and outlines step-by-step processes for users to get verified and understand the required standards for adding consistent and quality data. Encouraging users to share their data in a user-friendly interface will allow the database to grow and evolve organically as a collaborative space.

EVERYONE CAN ENTER DATA

- 1. Make your research data accessible to the world instantly.
 - a. If you have measured data that you would like everyone to use, the fastest way to achieve it is to upload your data to this platform.
- 2. Anyone can enter data following the steps below.
- 3. Contact Ashim Datta at akd1@cornell.edu for more information.

OVERVIEW OF STEPS Register Upload Verify Get approved

- Isolating Data: Gather property data from reliable, trusted sources such as research papers, books, manual, and online sources. Understand the property and consider the source and relevance of data to ensure accuracy. Extract and transfer the isolated data and share for approval.
- 2. Entering Data: In the "Contribute Data" section of the database is where formulas may be added with the proper variable. More detail discussed on the next page.
- 3. Validation: Follow the steps outlined in Section 1 of Data Retrieval to obtain a plot of the newly entered data. Examine this plot to ensure data was entered correctly and is represented accurately.

SECTION 3.1: GETTING VERIFIED

Step 1: In the database, users must login and get verified to enter data. Select "Sign Up" if unverified and enter the required fields. If verified, select "Login" and enter credentials.

Step 2: Selecting "Sign up" will take the user to the sign-up page below (left). Users selecting "Login" will take the users to the login page below (right). Users signing up will need approval before contributing data.

BioMaterial Bio-Material Database						BioMater Bio-Material Databa	rial							
Bio-Materials Bio-Materials	arial Composition Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property Chart	Property New Chart Welcome Guest Login Sig	Bio-Materials up	Bio-Mater	rial Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart Welcome Guest Login Sign up
Signup to cor	ntribute													
Your Information						User	Name:	Please Enter User	er Name					
First Name:	Please Enter First Name					Pas	sword:	Please Enter Pass	sword					
Last Name:	Please Enter Last Name							Sign In						
Affilation:	Please Enter Affilation					© 2018 Comright								
Position:	Please Enter Position					e zo to copyright								
Purpose:	Please Enter Purpose													
Will you be interested be a reviewer?	Yes No O													
Do you want to keep your data private?	Yes No 🔍													
Username and Passwo	ord													
Email @ UserName:	Please Enter Email													
Password:	Please Enter Password													
Confirm Password:	Please Confirm Password													
	Sign Up													
© 2018 Copyright														

Step 3: Once verified, select the "Contribute Data" dropdown and choose the desired category of data to enter.

SECTION 3.2: ADDING FORMULAS

This section gives instruction for adding formulas that allows users to define relationship between various food properties. In this database, a variable represents a value that can change according to user input. In contrast, a parameter is constant value used in the formula that cannot change once defined. It is important to follow the proper format and structure when adding formulas to the database so that they may be used.

Step 1: In the dropdown menu shown in Section 1: Step 2, select "Add Formula".

Step 2: Fill out the fields (displayed below) according to the source.

			-Variables Bio-propert	y Chart Property	New Chart
Contribute Data - My Contributi	ions - Review Contributions -	My Profile			
Add Your Bio-Mat	terial Formula _{@ub}	icly Visible)			
ame tour Formula:		Select Variable (T-AXIS):		
		i : remperatu			~
ter Your Formula:					
les for Entering Formula's					
Iles for Entering Formula's * Allowed Operations Addition: 2 + 2 Subtraction: 2 - 4 Allowed Functions bits that advances are non	Multiplication: 2 ⁺ 2 Division: 2/2. Exponentiation: multiplication: art size within ant families (but ranks for multiplication: art size within ant families)	1.^ 2 Unary Minus, Plus (Sign Operation of one network under Integer	vrsj. +2 - (-2). Modulo 2 % 2. znane, celat havendele ostina, are su	ter's pumber raised to the power (er's	d floor named lower integer log
Iles for Entering Formula's • Allowed Operations Addition: 2 + 2 Subtraction: 2 - 2 • Allowed Functions abut Bound + Subtraction: 2 - 2 togetmism stantal base = 6 yoof Subarthim base	 Multiplication: 2.*2 Division: 2./2 Exponentiation: 2 area asire area reare atam are transport coff-cold:ro. 10 logic: bugetth pase 2) area rear anth hypotho- 20 logic: bugetthe pase 2) area rearea anth hypotho- pase anth-pase 2). 	* 2 Unary Minus,Plus (Sign Operator t cell: nearest upper intager cost: o do sens expt -quarter root far. tange	rs];+2 - (-2) Modulo: 2 % 2 ouries costr. hyperbolic costre esp: es tank hyperbolic tangent signum:	ter's number raised to the power (e*) agrum function	() floor: nearest lower integer log:
Ites for Entering Formula's Allowed Operators Addition: 2 + 2 Subtraction: 2 - 3 Allowed Functions able attoches wake access and on lignatimum antimatig base in join2 (positrim dase • Any Defined Formula. Use Name of the formula	Multiplication: 2*2 Division: 2/2 Exponentiation: are asin: are sine atam are tangent other coble no 10 (og2: logarithm (base 2) sin: sine sinh: hyperb-	* 2 Unary Minus,Plus (Sign Operator t calt-neirest upper Integer cost ca bits sine sign sigure root tart targe	vrij:+2-(-2) Modulo:2 % 2 cosine costr. hyperbolic cosine exp: ex pert tarh: hyperbolic tangent signum:	fer's number raised to the power (e^u	ng floor: nearest lower integer log:
Iss for Entering Formula's • Allowed Operators Addition: 1 + 2 • Allowed Functions and addition to 4 + 2 ingentrymen analysis base is explored incontrol to a • Any Defined Formula. Use Name of the formula Formula Desc:	2 Multiplication: 2*2 Division: 2/2 Exponentiation: are asin: are sine atar: are tangent offic cubic not 10 log2: logarithm (base 2) an: sine sinit: hyperb Citation	* 2: Unary Minus,Plan (Sign Cerretor t: osti-nearest upper integer: cost: cost silo sine: signt equirer root. tant tange	viti +2 - (-2) Modulo: 2 % 2 cosine costr hyperbolic carpert signum: ent tark: hyperbolic tangent signum:	for a number raised to the power (e*n number raised to the power (e*n	n) floor: nearest lower integer log:
les for Entering Formula's • Allowed Operators Additors 2 + 2 Subtractors 2 + 2 Allowed Twenton sub. stocket value acce are con logarithma naturals (base in logits logarithm (base - Any Ostime Formula. Use Name of the formula Formula Desc:	2 Multiplication: 2*2 Division: 2/2 Exponentiation: are astic are sine attain are tangent chirt cubic no 10 log2: logarithm (base 2) sin: sine sinh: hyperb Citation	1.2 Unary Minus Plan (Sign Operator 4) cells neurost upper integer - cess to site site set equare nost - text tang site site.	vrg: +2 - (-2) Modulo: 2 % 2 cosine costri hyperbolic carna erc. ex pert tank hyperbolic tangent signum: DOI	fer's number tailed to the power (er's	n) floor: nearest lower integer log:
les for Entering Formula's • Allowed Operations Addition: 2 + 2 Subtraction: 2 - 4 Allowed Twentions Bate: Biotolevalue access are cen- logarithmus naturalis (base e) log10: logarithm (base • Arey Detfined Formula. Use Name of the formula Formula Desc:	2 Multiplication: 2 * 2 Division: 2/2. Exponentation: and are allow as all the start are tangent, core code no 10 log2: logarithm (base 2) sit: sine sink: hyperbr Citation	11 2 Unary Minus Pila Bign Operator et osti neurat upper integer cost o dis tree sept equire notit fact lang	vral +2 - (-0) Mosken: 2 % 2 costne cestri hyperbolic cestra espire pert tarit hyperbolic tangent signum: DOI	ter'n number missel to the power (e'n agnum function	g Toor nærest lover integer log:
tes for Entering Formula's • Allowed Operators Additor: 2 + 2 Subtraction: 2 - 3 • Allowed Functions abut advoids wake access are on logarithms watantia Base optic Capathino Rase • Arey Defined Formula. Use Name of the formula Formula Desc:	1 Multiprication: 2.1.2 Division: 2.1.2 Exponentiation: 2 ans abit are sine abar, are langent outriculation (10) logi: logarithm (base 2) ant ann amht hypath Citation	* 2 Unary Minus,Plus (Sign Operation 4: oait-neireat upper Integer: coat: o lice same sept square noot farc tange 1	ng; +2 - (-2) Mocuro 2 % 2 ourne costr hypotolic costre exp; ex ent turn: hypotolic turgent signum: i DOI	ler's number raised to the power (e*)	n) floor: nearest lower integer log:

Example Step 1: All formulas found must be cited by peer-reviewed literature. For example, the formula name C_P_SOL (ID: 182) is cited from Gulatti and Datta (2013). Then, an appropriate name must be added along with the formula added in proper format. The following excerpt is from Gulatti and Datta (2013):

12.1. Theoretical models

Specific heat is commonly estimated based on the mass fractions (x_i) of the individual components and their corresponding specific heats $(C_{p,i})$

$$C_p = \sum_i x_i C_{p,i} \tag{64}$$

$$C_{p,w} = 4.1762 - 9.0862 \times 10^{-5} T + 5.4731 \times 10^{-6} T^2 \quad 0^{\circ}C \leq T < 150^{\circ}C \tag{68}$$

$$C_{p,w} = 4.0817 - 5.3062 \times 10^{-3} T + 9.9516 \times 10^{-4} T^2 - 40^{\circ} C < T < 0^{\circ} C$$
(69)

$$C_{p,prot} = 2.0082 + 1.2089 \times 10^{-3} T - 1.3129 \times 10^{-6} T^2$$
(70)

$$C_{p,fat} = 1.9842 + 1.4733 \times 10^{-3} T - 4.8008 \times 10^{-6} T^2$$
(71)

$$C_{p,carb} = 1.5488 + 1.9625 \times 10^{-3}T - 5.9399 \times 10^{-6}T^2$$
(72)

$$C_{p,fiber} = 1.8459 + 1.8306 \times 10^{-3} T - 4.6509 \times 10^{-6} T^2$$
(73)

$$C_{p,ash} = 1.0926 + 1.8896 \times 10^{-3} T - 3.6817 \times 10^{-6} T^2$$
(74)

$$C_{p,ice} = 2.0623 + 6.0769 \times 10^{-3} T \tag{75}$$

$$C_{p,a} = 1.006$$
 (76)

Example Step 2: Combining the information found in this paper, a formula that combines these concepts to express the overall specific heat of dry food solids based on their composition made be inputted:

Bio-Formula Deta	IS	
ID	182	
Name	C_P_SOL	
Formula	((PROCNT/100)*C_P_PROCNT+(FAT/100)*C_P_FAT+((CHOCDF-FIBTG)/100)*C_P_CHOCDF+ (FIBTG/100)*C_P_FIBTG+(ASH/100)*C_P_ASH)	
Y-axis Variable	c_w - Specific Heat	
Variable ID	10027	
Formula Desc	Specific heat of dry solids	
Citation	Gulatti and Datta (2013)	
DOI		
Approved	0	
Added by	test	
Last Updated By	test	
Initially Created at	2020-10-13 18:03:38.0	
Last Upadted at	2020-10-13 18:03:38.0	

Example Step 3: Notice the convention of the inputted fields in the previous step. Additionally, once a formula is created, it may be called in a different formula, as these build on each other (highlighted below). It's important that the lower level formulas are inputted before higher levels (in this case, the lower level formula is C_P_SOL):

Bio-Formula Detail	s ×
ID	183
Name	C_P_FROZMIX
Formula	(WATER/100)*((1-ICE/100)*(C_PICE_OKOS)+(ICE/100)*C_PICE_OKOS+FUS_ICE_*(((dICE)/100)/(dT)))+(1-WATER/100)*C_P_SOL
Y-axis Variable	c_w - Specific Heat
Variable ID	10027
Formula Desc	Specific heat of a frozen composite
Citation	Datta and Rakesh (2009)
DOI	
Approved	0
Added by	test
Last Updated By	test
Initially Created at	2020-10-13 18:14:34.0
Last Upadted at	2020-10-15 17:48:34.0

SECTION 3.3: ADDING DISCRETE DATA

Discrete data refers to the distinct and separate values that can be counted, with clear boundaries between each value. Different from continuous data, which can take any value in a range, discrete data is countable and finite. Users may input discrete datasets that involve specific, individual measurements related to each biomaterial with proper citing. This allows for precise modeling and predictions that use the formulas from the previous section.

Step 1: In the dropdown menu shown in Section 1: Step 2, select "Add Discreet Data".

Step 2: Select a material or group to add a data set and fill out the required fields.

BioMaterial Bio-Material Database								
Bio-Materials Bio-M	aterial Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart	
Contribute Data - M	y Contributions -	Review Contribut	tions - My Profile					
Add Discree	t Dataset							
Reset Page								
Select Material / Group:		Material	Currently Sel	ected Material : Not	Set			
		-OR- Please enter bio-material name						
		Group						
Author Name:	Author Name							
Publish Year:	Publish Year							
Name of the Dataset:	Enter the name	e of Dataset						
Y-axis Variable:	Currently Select	ed Y-Axis Bio-Varia	ble: Not Set				~	
Add/Remove X-axis Vari	ables:	+ -						
Upload Dataset:	Choose File	No file chosen			U	pload File to Server	Change Upload File	
		Save Discree	t Data	Cancel Add				
© 2018 Copyright								

SECTION 3.3.1: EXRACTING DATA FROM FIGURES

Reviewed and approved inputs of discrete data may be viewed following steps of Section 6, Data Retrieval (Bio-properties). These values are specifically measured, recorded, and should be properly cited. Note the correct Y-axis Variable and X-axis Variables to be added. Multiple X-axis Variables may be added. Here is a step-by-step example of taking raw data from a figure and uploading it to the database.

Example Step 1: Obtain the raw data from the selected paper, an example displaying the permeability of raw potato tissue is shown below (Datta, 2006).

Figure 5 Water permeability in raw potato tissue of a different thickness.

Example Step 2: If the numerical data is not given, users may obtain this from figures through <u>https://plotdigitizer.com/app</u>. Upload the figure (this may be done in the browser).

Example Step 3: Define the axis by placing the X1, X2, Y1, and Y2 circles over the coordinates. Manually enter these X and Y axis values in the panel on right (circled below).

Note: If axial values are in scientific notation, they must be expressed in standard notation in this software. For example, '10^-17' becomes '0.00000000000000001'.

Example Step 4: To digitize these data points, click to add a data point and drag it to align it with the figure. Here, five data points (in white) are added and overlapped on the circle-shaped points (in black) to complete the permeability dataset for 2.62 mm slice potatoes.

Helpful Tip: Use the magnified window in the top right for accurate placement of data points.

Example Step 5: Lastly, export this data such that it may be uploaded to the database. Ensure all corrections to the dataset are made and that the variables and units are appropriate. Export as an .xls file. For figures with two sets of data, move each data point to the next set and re-export the data, changing the name to reflect the new dataset.

Example Step 6: Below is the exported format from PlotDigitizer. If no values are in scientific notation, please see Example Step 10.

•••	🔴 🔴 🔹 AutoSave 💭 🏠 🛱 🦻 🎾 🗸 🖓 🚥 🐵 Water Permeability of White Potato (5.4 mm slice) — Saved to my Mac 🗠												
Home Inse	ert Draw	Page Layo	out For	mulas	Data Rev	view V	iew Auto	mate	Acrobat				
	Aptos Narr	ow (Bod v	12 ~	A^ A		ab cŲ ∨	General		•	Conditional	Formatting v	Ins	sert v
Paste	В <i>I</i> <u>U</u>	• 🖽 •		A ~		**************************************	\$ • %	9 500	00. 0 →0	Cell Styles	ADIC *	For	rmat v
A1 🔺	$\times \checkmark f_x$	x											
A	В	С	D	E	F	G	Н	1	J	К	L	М	Ν
1 x y	0												
2 41694.4751	7.80E-18												
3 74493.8175	7.39E-18												
4 103052.342	7.34E-18												
5 141348.354	7.53E-18												
6 169787.401	7.38E-18												
7													

Note: All values must align with the units of each variable in the database. Follow Section 1.5 to retrieve information and units of measurements for each variable. Here, *Differential Pressure* is measured in Pascals [Pa] and *Intrinsic Permeability* is measured in square meters [m^2]. Rename the file appropriately. <u>If prompted with a security warning, open anyway. Select 'Convert' if prompted.</u>

Example Step 7: Convert the values of scientific notation to standard notation by highlighting the numbers and selecting "Number" from the dropdown shown below.

Section AutoSave Carlos													
Home In	sert Draw	Page Layou	t Formulas	Data I	Review	View	Automate	Acrobat					
Paste V	Aptos Narr B I L	row (Bod •)	12 • A A		≡ ∰ × ≡ ∰ ×	Sci AE 12	entific sc General ³ No specific fo	rmat	Conditional [■] ⊂ormat as T Cell Styles	Formatting v Table v	🔚 Ins 🎫 De 🛗 Fo	sert v elete v ormat v	∑ ∳
B2	$\times \checkmark f_x$	7.799815558	75845E-18			12	3 Number						
A	В	С	D E	F	G		0.00		к	L	М	Ν	
1 x 2 41694.4751 3 74493.8175 4 103052.342 5 141348.354 6 169787.401 7	y 7.80E-18 7.39E-18 7.34E-18 7.53E-18 7.38E-18						\$0.00 Accounting \$0.00 Short Dat	e					

Example Step 8: For small values, this data may show up as 0.00. Highlight the column and select "Increase Decimal" (circled below) and click for as many times until non-zero values appear. Select for a few more times depending on the accuracy of the instrument from the source. Here, the permeability measurement is precise to two decimal places (for 10E-19 m^2), and is therefore good to the 10E-21 decimal place.

● ● AutoSave 🕥 🏠 🛱 🍃 🥍 マ 🗇 … 📾 Water Permeability of White Potato (5.4 mm slice) ~											
Home Inse	ert Draw	Page Layo	out Formulas	Data Re	eview V	view Auto	mate A	crobat			
$ \begin{array}{c c} & & & \\ & & \\ Paste & & \\ $								Conditional Format as Cell Styles	l Formatting Table	Insert V Delete Format	
B2 🔺	$\times \checkmark f_x$	7.7998155	5875845E-18					Increase De	ecimal		
A	В	С	D E	F	G	Н	I	J	К	L	М
1 x 2 41694.4751 3 74493.8175 4 103052.342 5 141348.354 6 169787.401	0.00 0.00 0.00 0.00 0.00										

Example Step 9: Expand the column width to view all the values, if needed.

	● ● AutoSave 💭 🎧 🛱 🍃 🥍 マ C … 📾 Water Permeability of White Potato (5.4 mm slice) ~											
H	lome	nsert Draw	Page Layout	Formulas	Data R	eview	View Au	utomate	Acrobat			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								nal Formatting s Table v es v	· ► ಔ 			
В	B2 f_x 7.79981555875845E-18											
/	A	В	С	D	E	F	G	Н	1	J	К	L
1	x	у										
2	41694.47	51 0.00000000000	000007800									
3	74493.81	75 0.00000000000	000007394									
4	103052.3	42 0.00000000000	000007345									
5	141348.3	0.00000000000	000007525									
6	169787.4	0.0000000000000000000000000000000000000	000007376									

Example Step 10: Delete Row 1 of this table to ensure all values in the spread sheet are numerical values extracted from the source. Below is the proper format that may be saved and exported to the database.

•	● ● AutoSave 🕕 🎧 🛱 🦻 🥍 ▾ Ċ … 📾 Water Permeability of White Potato (5.4 mm slice) ∽												
Home Insert Draw Page Layout Formulas Data Review View Automate Acrobat													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								ng v E	🚰 Inse 🔆 Del 🛱 For				
A	A1 \checkmark X V f_x 41694.4750801138												
/	A	В	С	D	E	F	G	н	I	J	К	L	
1	41694.4751	0.000000000000000007800											
2	74493.8175	0.00000000000000007394											
3	103052.342	0.00000000000000007345											
4	141348.354	0.00000000000000007525											
5	169787.401	0.00000000000000007376											
6													
****Fix error in formatting, unable to upload data******

Example Step 11: Following Steps 1 & 2 of this section, users may now enter their data with their updated spreadsheet. Begin by selecting "Material" and determining the material that will be used. Here, raw potatoes (ID: 11352) will be used at the White Potatoes used in the paper. The following fields are to be filled out appropriately, and the x and y variable must resemble those extracted from the paper. Ensure the description is an accurate reflection of the data, and that the file is in a .xls format in order to be uploaded.

BioMaterial Bio-Material Database						
Bio-Materials Bio-M	laterial Composition Bio-Formu	Ila Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Add Discree	t Dataset				Welcome rgd64@c	ornell.edu (REVIEWER) Logout
Reset Page Select Material / Group		. Currently S	elected Material : No	t Set		
	-OR- Group	POTATOE	ES,FLESH & SKN,RA	N		٣
Author Name:	Datta					
Publish Year:	2006					
Name of the Dataset:	Water Permeability of Raw Po	otato (2.62mm slice)				
Y-axis Variable:	Currently Selected Y-Axis Bio-V Permeability (k_perm)	/ariable: Not Set				v
X-axis variable(1):	Differential Pres	sure (delta_p)				•
Add/Remove X-axis Var	iables: + -					
Upload Dataset:	Choose File Water Permea	bility of Raw Potato (2.62m	m slice).xls	Up	load File to Server	Change Upload File
	Save Disc	reet Data	Cancel Add			

© 2018 Copyright

SECTION 3.4: FORMULA MATERIAL ASSOCIATION

Once a material and formula are entered from the steps in Section 2 and 3 of this portion, they must be associated. Grouping is an important aspect of this database, as it contributes to enhancing the input and prediction process. Grouping should be broad enough to encompass items with similar characteristics, while still ensuring accuracy. For example, it is appropriate to group the formulas within specific types of food, like russet, red, and sweet potatoes sharing similar properties. But grouping a formula for potatoes with carrots or other vegetables may be too broad and inaccurate due to different moisture contents, textures, and heating and cooling behavior, as well as other properties.

Step 1: In the dropdown menu shown in Section 1: Step 2, select "Formula Material Association".

Step 2: Begin typing an existing formula or select from the dropdown. Please allow time for the dropdown to update if the formula is being typed. Descriptions of each are in the rightmost column.

BioMater Bio-Material Databas	ial ®						
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Contribute Data -	My Contributions -	Review Contribution	s - My Profile				

Associate Formula to Material(s)

Ple	ase pick a Formula		٣
id	name	formulaDesc	0
1	K_WATER	Thermal Conductivity of Water	
2	K_ICE	Thermal Conductivity of ICE	
3	K_PROCNT	Thermal Conductivity of Protein	
4	K_FAT	Thermal Conductivity of FAT	
5	K_CHOCDF	Thermal Conductivity of CARB	
6	K_FIBTG	Thermal Conductivity of CARB	

Step 3: Once selected, associated materials and groups will appear below. Some formulas may have some or none.

BioMate Bio-Material Datab	rial ^{ase}						
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Contribute Data	 My Contributions - 	Review Contribut	ions - My Profile				
Associat	e Formula to	Material	(s)			Welcome rgd64@c	ornell.edu (REVIEWER) Logout
K_FAT							•
Associated Ma	aterials for the Formul	a					
Material Id	Material Name	Short Desc					
5000		CHICKEN, BROIL	.ER,ROTISSERIE,BBQ,BR	EAST MEAT ONLY		D	elete Association
There are no Group	o Associated with the selecte	d Formula.					
All Materials							Add Material
Type Group Nam	e to Pick and add to the Forr	mula					Add Group
© 2018 Copyright							

Step 4: Select the material from the dropdown and select "Add Material" to associate that material with the formula. Additionally, materials may disassociated from formulas by selecting "Delete Association".

Bio-Mate	Materi erial Database	al						
Bio-Ma	aterials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Contril	bute Data -	My Contributions -	Review Contribut	ions - My Profile				
Ass	ociate	Formula to	Material	(s)				
K_FAT								•
Associ	ated Mate	erials for the Formula	a					
Materia	al Id	Material Name	Short Desc					
5000			CHICKEN, BROIL	ER,ROTISSERIE,BBQ,BR	EAST MEAT ONLY		<u> </u>	elete Association
There are	e no Group A	ssociated with the selected	d Formula.					
chicker	nl						,	Add Material
id	shortDe	SC						
4542	FAT, CHI	CKEN						
5000	CHICKE	N,BROILER,ROTISSERIE,BBQ,	BREAST MEAT ONLY					Add Group
5001	CHICKE	N, BROILERS OR FRYERS, MEA	T&SKN&GIBLETS&NE	CK,RAW				
5002	CHICKE	N,BROILER OR FRYER,MEAT&	SKN&GIBLETS&NECK	,FRIED,BATTER				
5003	CHICKE	N, BROILERS OR FRYERS, MEA	T&SKN&GIBLETS&NE	CK,FRIED,FLR				
5004	CHICKE	N, BROILERS OR FRYERS, MEA	T&SKN&GIBLETS&NE	CK,RSTD				

SECTION 3.5: ADD CUSTOM BIO-MATERIAL

This feature allows for users to add their own custom biomaterial data into this database. Users input detailed information in the fields displayed below that include descriptions, keywords, and characteristic parameter values. This feature enables enrichment of the database to include diverse and specific materials to foster collaboration among users from backgrounds in research, industry, and more.

Step 1: In the dropdown menu shown in Section 1: Step 2, select "Add Custom Bio-Material".

Step 2: Fill out the following fields. Ensure correct units in character parameter values.

BIO-Iviaterial	s Bio-Material Comp	osition Bio-For	mula Bio-	Material Groups	s Bio-Variables	Bio-property	Chart Property	New Chart
Contribute D	Data - My Contributio	ns - Review Co	ontributions -	My Profile				
Contribu	te Your Bio-M	aterial						
Name								
Description								
Keywords:	Please enter material	*	Keyword	1	Keyword2	K	eyword3	Keyword4
Characteris	tic parameters valu	ues (In a 100 gr	ns of the c	ustom mater	rials)			
Water	g	Fat		g				
Protein		Fiber			Additional			
Frotein	g	Fiber		g	Components:-	Se	elect an option	
Carb	g	Ash		g				

SECTION 3.6: ADD BIO-VARIABLE

This feature allows users to contribute to new variables in the database to enhance applicability. Users can define the variable and provide a description and other details. This function is crucial for capturing diverse properties of biomaterials to facilitate a more comprehensive research and development. User ability to add variables ensures the database remains extensive and up to date.

Step 1: In the dropdown menu shown in Section 1: Step 2, select "Add Bio-Variable".

Step 2: Fill out the following fields.

BioMaterial Bio-Material Database						
Bio-Materials Bio-Mate	erial Composition Bio-Formul	a Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Contribute Data - My C	Contributions - Review Contr	ibutions - My Profile				
Add A New B	io-Variable					
Variable Name:	Please Name Your Variable		Description:	De	escribe Your Variable	9
Unit of Measure:	Enter Unit of Measure		Symbol:	Pl	ease Enter Unique S	ymbol
© 2018 Convrict		Add Variabl	9			
© 2016 Copyright						

Helpful Tip: If adding a biomaterial that may be similar to one cataloged in the database, view the cataloged variable first to ensure proper and consistent formatting of newly entered biomaterial.

Example Step 1: Following Steps 1 & 2 of this section, users will be able to establish a new variable.

Bio-Materials Bio	io-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Contribute Data -	My Contributions -	Review Contributi	ons - My Profile				
						Welcome rgd640	@cornell.edu (REVIEWER) Logou
Add A New	v Bio-Variab	le					
\dd A New	v Bio-Variab	le					
Add A New	V Bio-Variab	Die our Variable		Description:		Describe Your Varia	ble
Add A New	V Bio-Variab	Die Dur Variable		Description:		Describe Your Varia	ble

Example Step 2: The following fields are filled out for the new variable, *Differential Pressure*. Unit of measurements should be chosen based on common values given in literature and brief description should be added. A unique symbol should be relevant to the variable name. See below.

Bio-Materials	Bio-Material Com	position	Bio-Formula	Bio-Mat	terial Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Contribute Data -	My Contributi	ions -	Review Contribut	ions -	My Profile				
								Welcome rgd64@	cornell.edu (REVIEWER) Logo
Add A Ne	w Bio-V	ariah	ble						
Add A Ne	w Bio-Va	ariab	ole						
Add A Ne	w Bio-Va	ariab	ole						
Add A Ne	ew Bio-Va	ariab	ssure			Description:		Differential pressure n	neasures pressure difference I
Add A Ne	ew Bio-Va	ariab	ssure			Description:		Differential pressure n	neasures pressure difference I

Example Step 3: Select "Add Variable" (circled above) to add the variable. Below is the result, viewed from the "My Contributions" tab.

ID	10324	
Name	Differential Pressure	
Desc	Differential pressure measures pressure difference between two points.	
SI Unit	delta_p	
UOM	Pa	
Added by	rgd64@cornell.edu	
Last Updated By		
Initially Created at	2024-07-23 03:17:10.0	
Last Upadted at	2024-07-23 03:17:10.0	
+ Show More		

SECTION 3.7: GROUPING OF BIO-MATERIALS

This section allows users to group various biomaterials to their respective groups.

Step 1: In the dropdown menu shown in Section 1: Step 2, select "Grouping Of Bio-Materials".

Step 2: Select the box for either "Material" or "Group".

© 2018 Copyright

Step 3a: If "Material" was selected, enter the name of the material along with the process and form. Select "Search" once these fields are complete.

sio-Materials Contribute Da	Bio-Material Composition Bio-For	rmula Bio-Material Groups ontributions - My Profile	Bio-Variables Bio-prope	rty Chart Property	New Chart
aterial oup	Search Bio-Materia	als For Grouping	g		
	Please Enter Search Name	Process	Form		
	chicken	BBQ	✓ BREAST	∽ Se	arch
	Material in Database CHICKEN, BROILER, ROTISSERIE, BBC	Q, BREAST MEAT ONLY			Select
	Material in Database CHICKEN, BROILER, ROTISSERIE, BBO CHICKEN, BROILER, ROTISSERIE, BBO	Q, BREAST MEAT ONLY Q, BREAST MEAT AND SKIN			Select
	Material in Database CHICKEN, BROILER, ROTISSERIE, BBO CHICKEN, BROILER, ROTISSERIE, BBO Materials Chosen	Q, BREAST MEAT ONLY Q, BREAST MEAT AND SKIN			Select
	Material in Database CHICKEN, BROILER, ROTISSERIE, BBO CHICKEN, BROILER, ROTISSERIE, BBO Materials Chosen	Q, BREAST MEAT ONLY Q, BREAST MEAT AND SKIN			Select

© 2018 Copyright

Step 4a: Select the material in the database, then type the group name to save this material to the group.

Contribute Da	s Bio-Material Composition Bio-Formula Bio-Material Groups Bio-Variables Bio-property Chart Property ata - My Contributions - Review Contributions - My Profile	New Chart
Material Group	Search Bio-Materials For Grouping	
	Please Enter Search Name Process Form	
	chicken BBQ V BREAST V	arch
	CHICKEN, BROILER, ROTISSERIE, BBQ, BREAST MEAT ONLY CHICKEN, BROILER, ROTISSERIE, BBQ, BREAST MEAT AND SKIN	
	Materials Chosen	
	CHICKEN, BROILER, ROTISSERIE, BBQ, BREAST MEAT ONLY	×
	CHICKEN, BROILER, ROTISSERIE, BBQ, BREAST MEAT ONLY	×

© 2018 Copyright

Step 3b: If "Group" was selected, type the name of the material and select "Search". Select one of the given materials.

SECTION 3.8: MY CONTRIBUTIONS

Step 1: To review all contributions inputted by the user, select "My Contributions" dropdown.

BioMaterial Bio-Material Database	
Bio-Materials Bio-Material Composition Bio-Formula Bio-Material Groups	Bio-Variables Bio-property Chart Property New Chart
Contribute Data - My Contributions - Review Contributions - My Profile	
My Formula My Discreet Data My Custom Bio-Material My Bio-Variable My Grouping Of Bio-Materials This site is meant for us materials. To start your adventure, type a food name into the input box and click 'Search'. This will bring you to a page listing the names of foods matching the input. For each food there will be two options, represented by little icons of a magnifying glass and a pencil. The magnifying glass will lead you to a page where you can view formula data corresponding to a chosen input food. The pencil icon will allow the input of new data points representing measurements of properties like temperature, density, thermal conductivity,etc In the data view page, you can select data for plotting. For a given	Welcome rgd64@cornell.edu (REVIEWER) Logout Formulas A formula relates a variable to another variable. For example, "#D = pow(10,(-4.4977 + (-581.28) / (115.71 - #Tk-)))" relates viscosity to temperature in Kelvin for certain oils. Some formulae require only one variable, such as the previous example, but others require composition information, such as the fat content or carbohydrate content.
food, there will be choices for the y-axis variable, and the corresponding x-axis variables (These are provided such that there is a formula that maps from the x-axis to the chosen y-axis variable. Select the desired range for the x-axis variable and select both checkboxes. Given the prior selections, the site will automatically determine the possible formulae. If the formula requires composition information for the chosen food (E.G. is not a function of only the x-variable), input boxes will appear, filled with the food's composition information for the given properties if it exists (i.e. if there are measurements for carbohydrates and fat, those will be filled in), or 'NOT_FOUND' if the property is not found in the database. The 'Plot' button will chart the given formula and points. The update page will allow you to input data points or new formulas © 2018 Copyright	

Step 2: Select the option of Data Input to be viewed. This will take the user to a page displaying all contributed data of that category.

BioMater Bio-Material Databa	rial						
Bio-Materials	Bio-Material Composition	Bio-Formula	Bio-Material Groups	Bio-Variables	Bio-property	Chart Property	New Chart
Contribute Data	 My Contributions - 	Review Contribution	ons- My Profile				
Search My Bio	-Formula Contribution	s				Welcome rgd64@co	rnell.edu (REVIEWER) Logout
Enter Partial Bio-	Formula Name or Description						Search
My Bio-Formu	la Contributions conta	ining text :					
Name	Formula	Des	scription		Citation	Status	3

© 2018 Copyright

SECTION 3.9: TIPS ON DATA INPUT

For accurate data input in this biomaterials database, ensuring that all measurements are consistently formatted is crucial. In this section, various tips and short guides are provided to help users get a better sense of their data input.

SECTION 4: VALIDATION

General validation within the database is crucial to ensure accuracy and reliability of all entries pertaining to formulas, material properties, and material associations. Every input into the database must be reviewed and cross-checked against known result and standard to confirm its validity. Having this rigor in the process helps maintain the integrity of the database and ensures it remains a dependable resource for research and application.

SECTION 4.1: FORMULA VALIDATION

corresponding to a chosen input food. The pencil icon will allow the input of new data points representing measurements of properties like temperature, density, thermal conductivity,etc... In the data view page, you can select data for plotting. For a given food, there will be choices for the y-axis variable, and the corresponding x-axis variables (These are provided such that there is a formula that maps from the x-axis to the chosen y-axis variable. Select the desired range for the x-axis variable and select both checkboxes. Given the prior selections, the site will automatically determine the possible formulae. If the formula requires composition information for the chosen food (E.G. is not a function of only the x-variable), input boxes will appear, filled with the food's composition information for the given properties if it exists (i.e. if there are

measurements for carbohydrates and fat, those will be filled in), or 'NOT_FOUND' if the property is not found in the database. The 'Plot' button will chart the given formula and

points. The update page will allow you to input data points or new formulas

To consider a formula valid in this database, the validator plays a crucial role in understanding the process being modeled, the equation used, and the range of applicability. For the formula validation, the validator must audit these formulas and constantly question the formula in the database against the data from the literature or source. Furthermore, the validator must use their own discretion in determining the applicable range of materials to which these formulas may be applied to, as described below.

Step 1: In the database, select "Review Contributions" dropdown. Select "Monitor Formula". Select a formula from this list to validate.

© 2018 Copyright

Step 2: Identify a formula to validate in the database, as well as the biomaterials associated with the formula. The example below is taken from Formula ID: 532, dielectric constant of fruits and vegetables.

	Bio-Formula Details	x
	ID	532
	Name	DIELECTRIC_CONST_Fruit_veg_1999
<	Formula	38.57+0.1255*T+0.456*WATER-14.54*(ASH/100)-0.0037*WATER*T+0.07327*(ASH/100)*T
	Y-axis Variable	diel - Dielectric Constant
	Variable ID	10008
	Formula Desc	The effect of ash and water content on fruit and vegetable dielectric constant
	Citation	Barringer et al., 2003
	DOI	J Food Sci 68: 234?239, 2003
	Approved	0
	Added by	
	Last Updated By	dg668@cornell.edu
	Initially Created at	2023-05-11 18:07:42.0
	Last Upadted at	2023-06-15 17:17:11.0

Step 3: Using the citation and DOI, locate the article and source to begin the validation process. Users should try accessing through their institution or department if the sources are restricted.

Dielectric properties of vegetables and fruits. . .

Table 2–Predi	ctive equations for the dielectric constant and the loss factor of the samples at 2450MHz.
Dielectric cons	stant
Overall Vegetables Fruits	κ′ = 38.57 + 0.1255·T + 0.4546·M − 14.54 · A − 0.0037 · M · T+0.07327 · A · T κ΄ = −243.0 +1.342 T + 4.593 M − 420.3 · A + 376.5 ·A° − 0.01415 · M · T − 0.3151 · A · T κ΄ = 22.12 + 0.2379·T + 0.5532·M − 0.0005134 · T² − 0.003866 · M · T
Dielectric loss	factor
Overall Vegetables Fruits	$ \begin{split} \kappa'' &= 17.72 - 0.4519 \cdot T + 0.001382 \cdot T^2 - 0.07448 \cdot M + 22.93 \cdot A - 13.44 \cdot A^2 + 0.002206 \cdot M \cdot T + 0.1505 \cdot A \cdot T \\ \kappa'' &= -100.02 - 0.1611 \cdot T + 0.001415 \cdot T^2 + 2.429 \cdot M - 378.9 \cdot A + 316.2 \cdot A^2 \\ \kappa'' &= 33.41 - 0.4415 \cdot T + 0.001400 \cdot T^2 - 0.1746 \cdot M + 1.438 \cdot A + 0.001578 \cdot M \cdot T + 0.2289 \cdot A \cdot T \end{split} $

T = temperature (°C), M = moisture (%), A = wet basis ash (%)

Sipahioglu, O., & Barringer, S. A. (2003). Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content. Journal of Food Science, 68(1), 234-239.

Step 4: Users must validate the numbers and variables of this equation, and ensure the formula is taken in the correct context and units are in the correct format.

In this example, the dielectric loss factor is a dimensionless quantity, and each component of the equation yields a dimensionless result.

Step 5: Users must take the formula into context, and validate that the formula, and its variables, are used properly. It is important to understand the intent of the paper when determining the extent of use for the formula based on the empirical data.

Bio-Formula Details		- Show Less
ID	532	All deSociated BioMaterial Names. 1. APPLES,RAW,WITH SKIN 2. APPLES,RAW,WITH SKIN
Name	DIELECTRIC_CONST_Fruit_veg_1999	3. APPLES,RAW,WO/SKN,CKD,BLD 4. APPLES,RAW,WO/SKN,CKD,MICROWAVE
Formula	38.57+0.1255*T+0.456*WATER-14.54*(ASH/100)-0.0037*WATER*T+0.07327*(ASH/100)*T	5. APPLES, RAW, RED DELICIOUS, W/ SKN 6. APPLES, RAW, GOLDEN DELICIOUS, W/ SKN 7. ADPLES, DAW, GADANNY, SMITH, W/ SKN
Y-axis Variable	diel - Dielectric Constant	8. APPLES,RAW,GALA,W SKN 9. APPLES,RAW,FUJI,W SKN
Variable ID	10008	10. BANANAS,RAW 11. BROCCOLLE (UMER CLUSTERS RAW 12. BROCCOLLE (UMER CLUSTERS RAW
Formula Desc	The effect of ash and water content on fruit and vegetable dielectric constant	13. BROCCOLI, STALKS, RAW 14. CARROTS, RAW
Citation	Barringer et al., 2003	15. CARROTS,BABY,RAW All Associated BioGroup Names:
DOI	J Food Sci 68: 234?239, 2003	1. Fruits and Fruit Juices 2. Raw Fruits
Approved	0	3. Raw Vegetables 4. Raw Vegetables IV 5. Raw Vegetables V
Added by		6. testing 7. MassDiffEmp
Last Updated By	dg668@cornell.edu	8. vgr 9. test 10. sample34
Initially Created at	2023-05-11 18:07:42.0	11. abc 12. aaa
Last Upadted at	2023-06-15 17:17:11.0	13. raw broccoli 14. test_2 15. fruit and veg raw
		16. carrots 17. apples
+ Show More)	18. raw appes
		Close

To view the associated biomateirals and biogroups, select "Show More" within the formula window.

As shown above, all the associated materials and groups are fruits and vegetables (except for test groups). From the paper, this is a correct application of the formula. An example of a material that is not applicable to this formula, but may be considered because of certain similarities is fruit juices. Though these juices originate from raw fruits, like the materials above, fruit juices have a much higher water content and differ drastically in composition and processing and therefore is not applicable.

Smaller discerning may be necessary for other materials and formulas, such as distinguishing parts of the same material. For example, the flesh of a potato is different from the skin of a potato, and this difference may compromise the application of certain formulas. In these cases, it is important for the user to understand the rationale and logic of the formula and literature to determine what is appropriate.

Step 6: Ensure that the formula is properly formatted in the database using the following rules:

- Allowed Operators:
 - Addition: 2 + 2
 - Subtraction: 2 2
 - Multiplication: 2 * 2
 - Division: 2 / 2
 - Exponentiation: 2 ^ 2
 - Unary Minus, Plus (Sign Operators): +2 (-2)
 - Modulo: 2 % 2
- Allowed Functions
 - o abs: absolute value
 - o acos: arc cosine
 - o asin: arc sine

- o atan: arc tangent
- o cbrt: cubic root
- o ceil: nearest upper integer
- o cos: cosine
- cosh: hyperbolic cosine
- exp: euler's number raised to the power (e^x)
- o floor: nearest lower integer
- log: logarithmus naturalis (base e)
- log10: logarithm (base 10)
- log2: logarithm (base 2)
- o sin: sine
- o sinh: hyperbolic sine
- o sqrt: square root
- o tan: tangent
- tanh: hyperbolic tangent
- signum: signum function
- Any Defined Formula. Use Name of the formula

Step 7: Using the chart property function of the database, the graphed data may be compared to that of the source. To validate the formula to its extent. Follow the steps in **Section 2.1**. Ensure the compositional data and biomaterial matches that of the original source. Below is the predictive chart (left) and source data (right), circled is the source water content and ash percentage, and the highlighted portion is the dielectric loss with respect to temperature for a raw carrot.

Step 8: Analyze the results. In this example, dielectric loss of raw carrots decreases with increasing temperature, consistent with the predictive chart and source data indicating the general trend is apparent. However, the actual values of the predictive formula differ slightly from the source data due to simplifications and assumptions of the formula, but these differences are minor in the predictive nature. The big things to note here are the trend, axis order of magnitude, and general alignment with the source data.

SECTION 5: USE EXAMPLES: MANUFACTURING, RESEARCH AND EDUCATION

For access to modules mentioned below, contact prof. Ashim Datta at akd1@cornell.edu.

This portion of the manual showcases a range of real-world applications that demonstrate the practical utility of the database. These examples are meant to provide inspiration and guidance to users seeking to leverage this database to solve complex problems or innovate their own work. Aiming to highlight tangible benefits and impact of food properties helps engage and motivate users to explore the full potential of this resource.

- Directionality in design of a new process or for a new formulation. In designing a drying process for a new material, a quick
 estimate of moisture diffusivity would give an idea of how much the drying time needed to be extended or reduced. Of
 course, properties alone cannot predict a complex process (here size, water content, etc., would also have effect) but a
 critical property like moisture diffusivity in drying is an important process predictor. The near-instantaneous nature of the
 prediction greatly minimizes the time and resource needs.
- Feasibility studies for novel ideas. For example, in planning a new microwaveable dinner, if we want to know how the chicken and the potatoes might heat relative to each other. One of the measures of this relative heating is their dielectric properties, as noted below (Yellow is chicken; blue is potato), obtained in a couple of minutes, saving time and resources by reducing the amount of experimentation.

3. Confidential storing of proprietary composition and properties for building a knowledge base for the product line for the manufacturer.

RESEARCH USE EXAMPLE

- Food being a complex material, its properties are hard to find. If we need a likely range of properties data for a range of composition, temperature, etc., the database can provide this information in a couple of minutes, as opposed to many hours trying to search through research literature. We can even change the composition of the existing material to make these estimates as close as possible to our need.
- 2. In future, it should be possible to dump the properties data into a file readable in COMSOL, thus linking properties data to analysis.

EDUCATION USE EXAMPLE

An instructional module on Canvas to learn about thermal conductivity uses the database to make the learner active. Questions currently include three areas — 1) comparison between property prediction and direct measurement, 2) comparison between different approaches to property prediction with different underlying physics, and 3) understanding the difference between materials from their estimated thermal conductivity data.

SECTION 5.1: MANUFACTURING EXAMPLES

This section provides practical manufacturing examples to show the application of the database in real-world scenarios. Each example demonstrates how specific data and predictive models in the database can optimize user manufacturing processes. These examples highlight the versatility of the database and encourage users to leverage its capabilities.

SECTION 5.1.1: PREVENTING MICROBIAL GROWTH OF RAW CHICKEN

Leveraging the water activity of an ingredient can be essential in maintaining shelf life and reduced waste from spoilages. By monitoring this property over a range of temperatures, one may be able to better optimize their food and inventory. Below is an example involving raw ground chicken (5332), observing the lag time as temperature increases by following the steps outlined in Section 1 of Data Retrieval. Lag time is important to a restaurant because it allows optimal temperatures for a product to prevent the time microbial growth begins. Another material may be added by following the steps in Section 2 of Data Retrieval.

From the data charted above, it may be noted that the lag time of raw ground chicken may be observed around 4 °C and reflects the minimal growth conditions for spoilage microorganisms. As the temperature rises above 8 °C. conditions become conductive to rapid growth and decrease the lag phase that allows for immediate growth of spoilage microorganisms. This trend highlights the importance of temperature maintenance in storage conditions of raw ground chicken.

Bartenders and mixologists may also use this database by observing the changing properties of alcohol and mixers. Below is an example involving Vodka and grenadine syrup, both commonly used together in making cocktails. Observing the changes in density and viscosity of these materials can help bartenders gain insight on serving these drinks at the correct temperature, depending if the drink is to be indulgent (thicker) or refreshing (thinner), or if it is to be layered, which relies on density. (Note these are two different displays obtained from two separate 'Chart Property' inputs.)

The density of vodka is higher than grenadine because of its higher water content, and both densities decrease with rising temperature due to the increasing molecular movement. The viscosity of vodka and grenadine (overlapped in this chart) increases with temperature because ethanol's molecules become more mobile and interact less with each other as temperature increases which leads to a decrease in the fluid's resistance to flow. Furthermore, the density of grenadine also increases because the syrup thickens when heated.

SECTION 5.1.3: MICROWAVE HEATING OF CHICKEN AND POTATOES

If a user were planning a new microwaveable dinner and wants to know how chicken and potatoes might heat relative to each other, measuring of their relative heating through their dielectric properties may be performed, as noted below (chicken ID: 5046, potato ID: 11352), obtained in a couple of minutes, saving time and resources by reducing the amount of experimentation.

The dielectric loss of raw chicken and potatoes decrease from 0 to 75 °C due to reduced molecular relaxation and loss of water content but curves up after 75 °C because proteins and starches denature at this temperature. The dielectric loss of chicken is greater than potatoes overall because chicken has higher protein content and less carbohydrate content, both of which contribute to significant dielectric loss, though both materials follow the same trend.

SECTION 5.1.4: MANAGING APPARENT VISCOSITY IN TOMATO PASTE

For processing certain foods that involve ingredients in a viscous liquid form, apparent viscosity plays an important role to ensure that the material flows properly through a tube or pipe. For example, a factory making large amounts of ketchup may be inclined to move as much tomato paste as possible, but need to be mindful of the viscosity of the paste relative to the shear rate, or the flow through the pipe. Below is a chart displaying this information.

TOMATO PRODUCTS, CND, PASTE, WO/ SALT ADDED, Apparent_viscosity

The apparent viscosity of tomato paste decrease with increasing shear rate due to the shear-thinning behavior of the material, where the alignment of suspended particles and breakdown of structure reduce the resistance to flow. This allows the tomato paste to become less viscous under high shear conditions, making it easier to handle and process.

SECTION 5.1.5: FREEZING PROCESS OPTIMIZATION FOR MICROWAVABLE MEALS

If a food processing company wished to package ready-to-eat microwavable meals, information on the freezing process of common microwavable meal foods, like chicken, is valuable. Charting and observing how the latent heat of pure water varies with pressure can help this company optimize the freezing process as it may increase the efficiency of the freezing process and ensuring the water content of the chicken freezes properly.

The latent heat of pure water in fried chicken breast decreases with increasing pressure because the high-pressure forces water molecules closer together and reduces the energy required to change phase from liquid to vapor. This results in lower latent heat with increasing pressure and reflects the decreased enthalpy change needed for the change in phase.

SECTION 5.1.6: THERMAL CONDUCTIVITY OF FROZEN CARROTS, TURKEY, AND YOGURT

If a user wishes to observe the heating process of various components of a microwavable dish, they can do so with ease by comparing multiple materials. For a classic microwavable meal containing frozen carrots, turkey and gravy, and chocolate yogurt, the following chart was constructed displaying the thermal conductivity of each material at various temperatures to determine the optimal heating. Furthermore, a similar chart was performed for dielectric loss as it relates to microwavable heating. The materials charted below are frozen carrots (11130), frozen turkey and gravy (5286), and frozen chocolate yogurt (19393).

The thermal conductivity of frozen carrots, frozen turkey and gravy, and frozen chocolate yogurt increases with rising temperature because the molecular vibrations and movement within the material increase allowing more heat transfer. Rigid, frozen materials will have lower conductivity, but as the temperature increases, the molecules gain momentum and mobility and more easily facilitate heat transfer. Frozen carrots have higher water content and more homogenous structure, leading to the highest overall thermal conductivity. Subsequently, turkey and gravy and yogurts due to lesser water content and complex, heterogenous structure. The dielectric loss of all these materials decreases with increasing temperature due to the increasing molecular motion that reduces the ability of dipoles to align with the alternating electric fields, lowering the material's ability to dissipate electrical energy as heat.

SECTION 5.2: RESEARCH USE EXAMPLES

This section provides detailed examples of how this database may be utilized for research purposes. Each example demonstrates the application of the database in addressing specific research questions and is meant to optimize experimental designs by allowing users to determine quick, reliable data of various foods and food properties. These examples show the database's role in facilitating efficient research workflows and enhances quality of research output.

SECTION 5.2.1: FOOD SAFETY EXAMPLE

Ensuring that the desired texture, consistency, and maintenance of mold is crucial for substances like blue cheese that have delicate physical properties and are required to maintain at specific condition. Understanding how density changes with temperature for this product aids in determining how other properties may be affected. Below is a graph of these variables for blue cheese (1004) that may be used to ensure this product retains its integrity in many aspects.

The density of blue cheese decreases with increasing temperature because heat will cause the fat and water content to expand and increase the volume while the mass remains constant. The molecules will move farther apart, and the cheese structure will become less compact as thermal expansion leads to lower density.

SECTION 5.2.2: COMPARITIVE ANALYSIS

Suppose a food scientist wanted to determine the optimal grain for a certain drying process, comparing between white rice, brown rice, and barley. Instead of having to individually test the thermal conductivity for each grain, the researcher may use the database knowing that an increased thermal conductivity may lead to a faster and more uniform drying process.

RICE,BROWN,LONG-GRAIN,RAW, Thermal Conductivity
 RICE,WHITE,LONG-GRAIN,REG,RAW,ENR, Thermal Conductivity

BARLEY, PEARLED, RAW, Thermal Conductivity

© 2018 Copyright

The thermal conductivity of brown rice, white rice, and barley increases with increasing temperature because high temperatures increase molecular vibrations and movement resulting in efficient heat transfer. White rice has the highest thermal conductivity due to its refined structure, while brown rice has a bran layer that decreases heat flow. Barley has the lowest relative thermal conductivity due to its fibrous nature.

SECTION 5.2.3: CUSTOMIZING CATALOGED MATERIALS EXAMPLE #1

The ability to customize materials within the database can be important to product developers by allowing them to cater to a diverse consumer preference and provide differentiation from the current material. In this example, the composition of a lasagna is altered based on recipes found online, instructing users how they can further utilize this database to their specific need and observe the behavior of their material.

Suppose a user wanted to edit the lasagna composition based on the following recipe for their version of lasagna.

Step 1: Follow Section 1: Steps 1-11 found in Data Retrieval. The item used is restaurant lasagna (36041) and the material composition is displayed below.

Material Composition Values	Material Composition 1	Material Composition	2 Material Compositi	ion 3 Material Composition 4	Material Composition 5
		M	aterial Composition 1		
	Material Composition	Unit	USDA Value	Change Value(Optional)	
	Water	g	64.87	64.87	
	AIR	g	0	0	
	ICE	g	0	0	
	Protein	g	10.83	10.83	
	Carbohydrate, by difference	g	11.36	11.36	
	Total lipid (fat)	g	10.69	10.69	
	Fiber, total dietary	g	1.5	1.5	
	Ash	g	2.25	2.25	

Step 2: For the new lasagna recipe, determine the ingredients and quantity of each in grams.

- Lasagna Noodles (32010): 300 grams
- Ground Beef (13285): 500 grams
- Ricotta Cheese (1036): 250 grams
- Mozzarella Cheese (1026): 200 grams
- Tomato Sauce (6960): 400 grams
- Total mass of lasagna: 1700 grams

Helpful Tip: When working with multiple materials, note the ID number associated with the material. These can be found next the material in most dropdowns, or in 'Details' if searched in the 'Bio-Materials' tab (See "Getting Oriented: Biomaterials"). This will ensure efficient and accurate searching and charting of the material.

Step 3: Determine the compositional values of each ingredient, that is, determine the protein, carbohydrate, lipid, fiber, water, and ash quantities in grams per 100 grams. Values obtained below are estimations retrieved from database.

Ingredient	Protein (g)	Carbohydrate (g)	Lipid (g)	Fiber (g)	Water (g)	Ash (g)	Total (g)
Lasagna	11	74	2	3	7	5	100
Noodles							
Ground Beef	30	0	10	0	58	2	100
Ricotta	11	3	13	0	72	1	100
Cheese							
Mozzarella	22	2	22		50	3	100
Cheese							
Tomato	1	7	1	1	88	2	100
Sauce							

Step 4: Calculations of each using the information from the steps above. Every composition will have a calculation for each ingredient. The example for protein only:

Lasagna Noodles: 300 grams of Lasagna Noodles * (11 grams of protein)/(100 grams of Lasagna Noodles) = 33 grams of protein

Ground Beef: 500 grams of Ground Beef * (30 grams of protein)/(100 grams of Ground Beef) = 150 grams protein

Ricotta Cheese: 250 grams of Ricotta Cheese * (11 grams of protein)/(100 grams of Ricotta Cheese) = 27.5 grams of protein

Mozzarella Cheese: 200 grams of Mozzarella Cheese * (22 grams of protein)/(100 grams of Mozzarella Cheese) = 44 grams of protein

Tomato Sauce: 400 grams of Tomato Sauce * (1 grams of protein)/(100 grams of Tomato Sauce) = 4 grams of protein

From these calculations, it can be determined that this lasagna has 269 total grams of protein. Next, determine the grams of protein per 100 grams of lasagna as this value will be entered as the composition value for protein.

Total Protein (grams): 100 * (258.5 grams of protein)/(1650 total grams of lasagna) = 15.67 grams of Protein

Step 5: Repeat these calculations for every compositional group.

Total Water (grams): 100 * (942 grams of Water)/(1650 total grams of lasagna) = 57.10 grams of Water

Total Carbohydrate (grams): 100 * (261.5 grams of Carbohydrate)/(1650 total grams of lasagna) = 15.85 grams of Carbohydrate

Total Lipid (grams): 100 * (136.5 grams of Lipid)/(1650 total grams of lasagna) = 8.27 grams of Lipid

Total Fiber (grams): 100 * (13 grams of Fiber)/(1650 total grams of lasagna) = 0.79 grams of Fiber

Total Ash (grams): 100 * (41.5 grams of Ash)/(1650 total grams of lasagna) = 2.51 grams of Ash

Step 6: Repeat Step 1 of this section, adding a second material, and change the compositional values to the calculated ones of the custom lasagna.

Material Composition	Unit	USDA Value	Change Value(Optional)	
Water	g	64.87	57.1	
AIR	g	0	0	
ICE	g	0	0	
Protein	g	10.83	15.67	
Carbohydrate, by difference	g	11.36	15.85	
Total lipid (fat)	g	10.69	8.27	
Fiber, total dietary	g	1.5	0.79	
Ash	g	2.25	2.51	

Step 7: Chart the two lasagnas. The orange line is the new, custom lasagna with adjusted composition parameters.

© 2018 Copyright

A lasagna with lower water content and higher protein and carbohydrate content has higher relative thermal conductivity because proteins and carbs are better heat conductors than water. Thermal conductivity increases with temperature because higher temperature increase the molecular vibrations and increase the efficiency of heat transfer.

Optional Step: The individual ingredients may also be graphed together to observe the behavior of each component in the lasagna.

PASTA MI,XITALIAN LASAGNA,UNPREP, Thermal Conductivity

BEEF, CHUCK, UND BL POT RST, BNLESS, LN, 0 FAT, ALL GRDS, CKD,

CHEESE, RICOTTA, WHOLE MILK, Thermal Conductivity

CHEESE, MOZZARELLA, WHL MILK, Thermal Conductivity

SAUCE, PASTA, SPAGHETTI/MARINARA, RTS, Thermal Conductivity

© 2018 Copyright

Pasta has the highest relative thermal conductivity than the other ingredients because of its dense structure that allows efficient heat transfer. Beef has a high fat content and lower thermal conductivity due to the insulating properties of fat. Ricotta and mozzarella cheese, along with spaghetti sauce, have lower thermal conductivity due to higher water content and less dense structure. Ricotta cheese has higher moisture content and allows for more efficient heat transfer than mozzarella cheese.

Like the previous example, the compositional values of every item in the database may be edited to tune a certain product to the user's liking. In this example, Swanson's Chicken a la King is edited based on a slightly different recipe.

Step 1: Follow Section 1: Steps 1-11 found in Data Retrieval. The item used is Swanson Chicken a la King (22951) and the material composition is displayed below for charting density as a function of porosity.

Material Composition 1 Values	Material Compos	tion 2 Material Comp	position 3	Material Composition 4	Material Composition 5
		Material Composition	1		
Material Composition	Unit	USDA Value	Value	Change e(Optional)	
Water	g	80.1	80.1		
AIR	g	0	0		
ICE	g	0	0		
Protein	g	4.7	4.7		
Carbohydrate, by difference	g	4.03	4.03		
Total lipid (fat)	g	4.03	4.03		
Fiber, total dietary	g	0.7	0.7		
Ash	g	7.15	7.15		
т	С	0	0		

Step 2: For the new chicken recipe, determine the ingredients and quantity of each in grams.

- Canned Chicken with Broth (5277): 300 grams
- Canned Red Peppers (11916): 100 grams
- Canned Mushrooms (11264): 100grams
- Vegetable Oil (4670): 30 grams
- Wheat Flour (20080): 50 grams
- Total mass of lasagna: 580 grams

Step 3: Determine the compositional values of each ingredient, that is, determine the protein, carbohydrate, lipid, fiber, water, and ash quantities in grams per 100 grams. Values obtained below are estimations retrieved from database.

Ingredient	Protein (g)	Carbohydrate	Lipid (g)	Fiber (g)	Water (g)	Ash (g)	Total (g)
		(g)					
Chicken	22	0	8	0	68	2	100
(Broth)							
Red Peppers	1	4	0	1	91	3	100
Mushrooms	1	5	0	2	91	1	100
Vegetable Oil	0	0	100	0	0	0	100
Wheat Flour	13	72	2	6	6	1	100

Step 4: Repeat steps 4-6 of the previous section and edit these components to be charted.

		Material Composition	1
Material Composition	Unit	USDA Value	Change Value(Optional)
Water	g	80.1	80.1
AIR	g	0	0
ICE	g	0	0
Protein	g	4.7	4.7
Carbohydrate, by difference	g	4.03	4.03
Total lipid (fat)	g	4.03	4.03
Fiber, total dietary	g	0.7	0.7
Ash	g	7.15	7.15
т	С	0	0

		Material Composition	2
Material Composition	Unit	USDA Value	Change <u>Value(</u> Optional)
Water	g	80.1	73.1
AIR	g	0	0
ICE	g	0	0
Protein	g	4.7	9.14
Carbohydrate, by difference	g	4.03	8.36
Total lipid (fat)	g	4.03	7.93
Fiber, total dietary	g	0.7	0.78
Ash	g	7.15	0.9
т	C	0	0

Step 7: Chart the two meals. The orange line is the new, custom lasagna with adjusted composition parameters.

Optional Step: The individual ingredients may also be graphed together to observe the behavior of each component in the Swanson meal.

The properties graphed here visualize how density changes with porosity. This may be important for a user because the results show that density decreases as porosity increases, indicating that the product becomes less compact (dense) and more airy. The compactness and airiness of Chicken a la King is important because this product has a creamy and dense consistency, so ensuring that the porosity does not become too high is crucial in maintaining its characteristic texture.

SECTION 6: PROPERTY ESTIMATION DETAILS

SECTION 6.1: OVERVIEW OF THE PREDICTION PROCESS

8,800 unique Materials

The database holds prediction equations and discrete property data from published literature. The composition data come from the **-year old composition database from the US Department of Agriculture. Since the literature data is typically for a very restricted material (sometimes just specific to that experiment), we do generalize the predictions to a broader group of same material from different sources or even similar materials.

The search logic is shown in the figure below.

2,500 unique qualifiers Collection of all Collection of all Cooked

Basis of search in the first bar

SECTION 6.2: SOURCE OF PROPERTIES DATA AND EQUATIONS

Only refereed publications in well-known engineering and food science journals are included. Once input, the data visualization is cross-checked against the source and, at times, against related work. They should also pass our general qualitative understanding. Important to note that we are not being a gatekeeper of data. All published data are included but some get extra scrutiny if the trends are contrary to general understanding.

Composition data for about 9000 materials are included from the USDA database. About 750+ predictive formulas are included for the following properties:

- 1. Activation Energy
- 2. Apparent Density
- 3. Apparent Viscosity
- 4. Bound Water Mass Fraction
- 5. Consistency Coefficient
- 6. Density
- 7. Dielectric Loss
- 8. Diffusivity
- 9. Enthalpy
- 10. Initial Freezing Point
- 11. Initial Reaction Rate
- 12. Isothermal Compressibility
- 13. Lag Time
- 14. Latent Heat of Fusion
- 15. Maximum Specific Growth Rate
- 16. Porosity
- 17. Specific Volume
- 18. Thermal Conductivity
- 19. Thermal Expansivity
- 20. Viscosity
- 21. Water Activity

SECTION 6.3: DISCRETE DATA AND PREDICTION EQUATIONS

Types of property data include discrete data and prediction equations, with emphasis on the latter since it has much broader reach.

Looking at the formula for thermal conductivity with a series formulation, this formula may be applied to all materials because it takes into account the contribution to thermal conductivity of each component in a mixture. The formula uses volume fractions and density ratios to normalize the relative specific thermal properties.

The structure of the formula allows it to adapt to various materials by adjusting to the specific thermal conductivity values of the components involved. Here is an example using White Potatoes (11354) and Raw Carrots (11124):

The graphs of thermal conductivity of these two materials is different despite using the same formula because of the material composition, shown below. White Potatoes (left) and Raw Carrots (right).

		Material Composition	1			Material Composition 2	
Material Composition	Unit	USDA Value	Change Value(Optional)	Material Composition	Unit	USDA Value	Change Value(Optional)
Water	g	81.58	81.58	Water	g	88.29	88.29
AIR	g	0	0	AIR	g	0	0
ICE	g	0	0	ICE	g	0	0
Protein	g	1.68	1.68	Protein	g	0.93	0.93
Carbohydrate, by difference	g	15.71	15.71	Carbohydrate, by difference	g	9.58	9.58
Total lipid (fat)	g	0.1	0.1	Total lipid (fat)	g	0.24	0.24
Fiber, total dietary	g	2.4	2.4	Fiber, total dietary	g	2.8	2.8
Ash	g	0.94	0.94	Ash	g	0.97	0.97
por	1	0	0	por	1	0	0

SECTION 6.4: CROWDSOURCING

GLOSSARY

This glossary of food properties can be invaluable for users of this database by providing clear, concise explanations of the various physical, chemical, and biological characteristics. Knowledge of these properties and how to apply them can help user influence the behavior and quality of food products. This glossary allows users leverage the full potential of this database to drive innovation, optimize processes, and ensure safety of food products.

Activation Energy: The minimum energy required to start a chemical reaction. This is crucial for understanding the temperature sensitivity of food reactions (monitoring enzymatic activity and spoilage reactions) which users can use to predict shelf life and optimize processing conditions. Relevant variables: temperature, reactant concentrations, pH level.

Apparent Density: Bulk density of a material that includes the volume of pores. Useful in packaging and storage optimization and logistical planning of transportation. Relevant variables: temperature, moisture content, porosity, composition.

Apparent Viscosity: Measure of a fluid's resistance to flow under certain conditions. Used to determine texture and flow of food products that may be vital for quality control in liquid products (sauce, dressings, soups, etc.). Relevant variables: temperature, composition, shear rate.

Bound Water Mass Friction: Portion of water in a food product that is physically or chemically bound. This is necessary for understanding the stability and shelf life of food product and can be used to design dehydration or drying processes. Relevant variables: temperature, humidity, composition.

Consistency Coefficient: Parameter that indicates fluidity thickness. Used to characterize flow behavior of fluids that may help quality control and process design for fluid products. Relevant variables: temperature, composition, shear rate.

Density: Mass per unit volume of a substance. This property is useful in determining the weight of food given its volume, and vice versa, which may be important for packaging, shipping, and portion control, as well as insight into texture and composition of material. Relevant variables: temperature, pressure, phase.

Dielectric Loss: Quantifies the energy that is dissipated in a material when exposed to an electric field. Useful for microwave heating applications that allow users to optimize heating processes for uniform cooking with reduced energy consumption. Relevant variables: Frequency of electric field, temperature, moisture content, composition.

Diffusivity: Measure of how fast a substance spreads through a medium. This can be used for the rate of nutrient or movement of contaminants within and around food products. Crucial for marination, storage, and contamination control. Relevant variables: temperature, medium content, concentration gradient, size.

Enthalpy: The total internal energy (heat) of a system. Important for calculating energy requirement in a thermal process that can help to optimize heating and cooling methods to maximize efficiency and product quality. Relevant variables: temperature, pressure, phase.

Initial Freezing Point: The temperature that food begins to freeze. Crucial for designing freezing storage processes. Helps to ensure that products freeze properly and uniformly and maintaining texture and flavor. Relevant variables: Solute concentration, pressure, impurity content.

Initial Reaction Rate: The speed that a reaction proceeds when it begins. This property may help in predicting the speed of a reaction (i.e. fermentation) and allow users to tune to their liking based on processing time and conditions. Relevant variables: temperature, catalyst presence, pH level.

Isothermal Compressibility: Measure of the relative volume change of a substance under pressure at a constant temperature. Significant for understanding food behavior in high pressure conditions and may help users optimize conditions for maintenance. Relevant variables: pressure, temperature, phase.

Lag Time: The period before the start of observable microbial growth. This is important for safety and preparation of food. Users may use this information to estimate microbial growth and aim to prevent it by changing storage and handling procedures. Relevant variables: microbial load, nutrient content, temperature.

Latent Heat of Fusion: Heat required to change a substance from solid to liquid. Useful in designing thawing processes and can help users calculate required energy for phase change to construct preservation processes and reduce energy consumption. Relevant variables: purity, pressure, phase.

Maximum Specific Growth Rate: The fastest rate an organism can reproduce under optimal conditions. This rate is critical for modeling microbial growth rate in foods and can help users construct optimal preservation strategies by predicting spoilage timeline. Relevant variables: nutrient content, oxygen availability, temperature.

Porosity: Measure of void of space in a material. Important to determine the texture and moisture retention that can help users optimize cooking processes (drying, frying) to achieve the desired product texture and consistency. Relevant variables: composition, particle distribution, moisture content.

Specific Volume: Inverse of density and represents volume per unit mass of a substance. Important for evaluating the texture and airiness of products. Relevant variables: temperature, pressure, composition, porosity.

Thermal Conductivity: Rate that heat passes through a material. Essential for designing thermal processing equipment and ensure proper heating and cooling of food product and packaging. Relevant variables: temperature, moisture content, structure.

Thermal Expansivity: Rate of material expansion with temperature. Helps in designing thermal processes (baking, cooling, freezing) to ensure uniform heating or cooling to maintain product integrity. Relevant variables: temperature, pressure, phase.

Viscosity: The measure of a fluid's resistance to flow, critical for determining the texture of food products.

Water Activity: Measure of free water in a substance available for microbial growth. Controlling such property is important in food preservation and safety. Property data can be used to predict shelf life and spoilage rate by maintaining optimal moisture level. Relevant variables: temperature, moisture content, solute concentration.
INDEX

FORMULAS IN READABLE FORMAT

The formulas of this database are compiled by the developers and users and can be found throughout. For users unfamiliar with the modelling of materials and their properties, below are examples of reformatted formulas:

1. Enthalpy of Fat:

1.9842*(T_F-T)+(1.4733*(10^-3)*(T_F^2-T^2)/2)-(4.8008*(10^-6)*(T_F^3-T^3)/3)

$$1.9842 imes (T_F - T) + \left(1.4733 imes 10^{-3} imes rac{T_F^2 - T^2}{2}
ight) - \left(4.8008 imes 10^{-6} imes rac{T_F^3 - T^3}{3}
ight)$$

Thermal Conductivity of Ice:
 2.21960 - (6.2489 * pow(10,-3) * T) +(1.0154 * pow(10,-4) * pow(T,2))

$$2.21960 - (6.2489 imes 10^{-3} imes T) + (1.0154 imes 10^{-4} imes T^2)$$

 Consistency Coefficient for Pera Orange: 1.096*pow(10,-8)*exp(5264/Tk+14.53*C_p)

$$1.096 imes 10^{-8} imes e^{\left(rac{5264}{T_k}+14.53 imes C_p
ight)}$$

CO2 evolution of blueberry (coville cultivar) at 15 C:
 1.3*OXY_CONS_BLUEBERRY_COVILLE_15C + (51.06)/(0.18 + 0.04*p_oxy + p_co2 + 1)

$$1.3 imes ext{OXY_CONS_BLUEBERRY_COVILLE_15C} + \left(rac{51.06}{0.18 + 0.04 imes p_{ ext{oxy}} + p_{ ext{co2}} + 1}
ight)$$

 Speed of sound in muscle (mixture of protein, fat, and water) at temperature T: (1/((m_fa/(c_fT)^2)+(m_bw/(c_wT)^2)+(m_p/(c_p)^2)))^0.5

$$\left(\frac{1}{\left(\frac{m_{\mathrm{fa}}}{(c_{\mathrm{fT}})^2}\right) + \left(\frac{m_{\mathrm{bw}}}{(c_{\mathrm{wT}})^2}\right) + \left(\frac{m_{\mathrm{p}}}{(c_{\mathrm{p}})^2}\right)}\right)^{0.5}$$

FORMULA VARIABLES

The following table lists variables used in predictive formulas, including descriptions of each variable that are meant to help users interpret formulas to better understand the outputted chart.

Variable Name	Variable Symbol	Unit of	Description
		Measurement	·
Angular	Omega_dielec	Unitless	This variable represents the angular frequency of the applied
Frequency			electric field, and is a crucial factor in determining the frequency
			dependent dielectric properties of polar materials.
			DIELECTRIC_DIPOLAR_CONST_1929:
			((Dielec_Const_low_freq-
			Dielec_Const_high_freq)/(1+ omega_dielec ^2*tau_relax_time^2))+
			Dielec_Const_high_freq
Activity	Gamma	Unitless	The activity coefficient to determine water activity, important for
Coefficient			understanding thermodynamic properties and stability of water in
			materials.
			aw_water_solution (695):
			gamma*mol_w
Apparent	eta_a	Pa*s	Measures the resistance to flow in fluids expressed in Pascal-
Viscosity			seconds.
Area	Area	m^2	Fundamental physical quantity represent product of length and
			width in a two-dimensional space.
			electrical_conductivity_general (558):
			(Length*I)/(Area *Voltage)
Ash Mass	m_a	Unitless	The ash mass fraction, described by formula kg ash / kg total mass,
Fraction			represents the proportion of ash content in a material.
			critical membrane breakdown potential ():
		4 / D	
beta_f	beta_f	1/Pa	Adiabatic compressibility of fructose, measured in reciprocal
			Pascals, indicating now the volume of fructose changes under
hata a	hata a	1 /Da	pressure without neat.
beta_g	beta_g	1/Ра	Adiabatic compressibility of glucose, measured in reciprocal
			Pascals, indicating now the volume of fructose changes under
hota c	hata a	1/Do	pressure without neat.
bela_s	bela_s	1/Pd	Adiabatic compressibility of sucrose, measured in reciprocal
			Pascals, indicating now the volume of indiciose changes under
Round Water	m hw	Unitlass	The bound water mass fraction is the ratio of water that is
Mass Eraction	III_DW	Unitless	nhy sically/chemically bound within a material to the mass of the
			physically/chemically bound within a material to the mass of the material and cannot move or evanorate
Brix Degrees	Briv	Degrees (Briv)	Briv degrees measure the nercentage of soluble solids in a liquid
DITA DEGLEES	DIIX	Degrees (DIIA)	like sugar which is essential in determining sweetness
			concentration viscosity and consistency of heverages
Change in Ice	dice	Kilogram	The change in ice mass measures the variation in the mass of ice
Mass	UICE	Mograni	within a material crucial to calculating thermal properties like
111033			specific heat and phase transitions
111035			specific heat, and phase transitions.

Change in Temperature	dT	Celsius	The change in temperature measures the variation in temperature within a substance, useful for calculating thermal properties and phase transitions.
Collision Integral	collision_integral	Unitless	The collision integral is used to calculate the diffusivity of gases and represents the effect of intermolecular collisions, important in predicting gas behavior under various conditions.
Collision Diameter	collision_diameter	Angstroms	The collision diameter measures the effective diameter of gas molecules during collisions, crucial for calculating gas diffusivity from its influence on the path and interaction between molecules.
Concentration	С	Unitless	Concentration of a solution representing the percentage of a solute by weight in the solution, critical in determining density, thermal conductivity, and diffusivity (low level formulas).
Concentration of hydrocolloid	C_hydrocolloid	%	The concentration of hydrocolloid represents the percentage of hydrocolloid in a mixture and determines electrical conductivity in materials.
Concentration of Water	C_water	% water	The concentration of water represents the percentage of water by weight in a solution, where higher water concentration typically increases water activity affecting stability and preservation.
Concentration Parameter Term at 25C	K_c_25	S/m %	The concentration parameter at 25 °C, measured in Siemens per meter per percentage, quantifies the contribution of hydrocolloid concentration to the electrical conductivity of a solution at 25 °C.
Concentration solid	C_s	%	The concentration of solids represents the percentage of solid content in a mixture, influencing texture and stability and determining viscosity and conducting of materials.
Consistency Coefficient	K_visc	N*s^(n_visc)/m^2	The consistency coefficient is a parameter of the viscosity power law model, measured in Newton-seconds to the power of the flow behavior index per square meter, quantifying the inherent thickness of fluid under shear.